新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 揭密汽车领域的新型被动器件应用

揭密汽车领域的新型被动器件应用

作者:时间:2011-03-17来源:网络收藏

以前,车载用的DCDC和一般的民用品相比,一般普遍使用100kHz不到的比较低的驱动,但是最近为了小型化,民用的电子设备里使用的开关频率迅速上升,过去的环状卷线型的电源电感小型化了,向SMD化转变。

环状卷线的线圈基本上是靠手工卷线,操作员工不同,参差很大。但是由于SMD化后,自动卷线,不仅做到了小型化,更提高了品质的稳定性。

另一方面,汽车大部分都有AM收音,考虑到收音噪音的影响,DCDC的开关频率需要避开AM收音频率带(AM收音频率带540~1620kHz)。

因此,要将开关频率提高到500kHz以上,就必须一下子把频率带做到1.6MHz之上,但是以现状来看很难。这是小型化的难点。

另外,电源电感会伴随发热,在高温下使用的情况下,有适用温度的上限,还受自身升温的制约。

也就是说假定周围温度为室温~65℃,民用可以上升40℃,与此相对使用在高温环境下的话,允许温度上升的空间小,可能会导致通过的电流小于民用产品的电流。

一直以来,一般的电感是以Ni-Zn系的铁氧体作为磁芯的,这种材料虽然强度较高,但是饱和磁束密度较低,高温时,饱和磁束密度会降低,在电子部件驱动日趋低电压,大电流化的今日,这类小型化产品无法对应大电流。要在高温环境下通过更大的电流,就要使用由饱和磁束密度高且损耗小的Mn-Zn铁氧体磁芯构成的电感。一般而言,Mn-Zn铁氧体材料的电感,磁芯的中脚部分会形成Gap,磁芯的中脚部分开始较容易饱和。如图4 VLM所示,结构是由口字形磁芯(磁性结合型磁芯)和棒状磁芯组成。采用了这种构造后,将本来容易产生饱和的中心磁芯的中脚部分分成上下两部分,在上下根部形成Gap,不易出现部分饱和,能够容许更大电流通过。另外,由于Gap分散在卷线的上下两端,可以减少从Gap泄漏的磁束对卷线的影响。过电流损失减少,电源效率也提高了。再者,还可使用金属磁芯的电感。它的饱和磁束密度更高,受温度影响饱和电流的变化很少。如图6 ERM6050所示。金属磁芯的电感还有另外一款复合金属型的电感(图7 SPM系列)。

我们不能否定电源电感中泄漏的磁束不会引起各9种误动作,所以就致力于把Gap做到线圈的下方(图2 LTF5022);把Gap转到电感内部(图4 VLM系列)。

受各种电子器件控制的影响,电源电感的可听频率带信号可能重叠,发出嘶响。如果安装在引擎室内没有任何问题,但是随着对车内环境安静性的提高,这类器件安装在引擎室之外的场所时,电源电感的低噪音对策就显得尤为重要。

可听频率带的信号只要通电,就不能完全抑制鸣叫的发生。但是为了降低鸣叫,可以通过采取使用低磁致伸缩材料,减少组成部件,向更小型化发展,及固定部件尽可能把固有频率提高到可听频率带之上这类方法解决。

如同图7 SPM系列这类的复合金属型产品不仅仅能对应高温时的大电流,因为绕线和磁芯材料是一体成形的,更能有效抑制绕线的振动,降低鸣叫。

随着今后电动汽车及混合动力车的发展,汽车的电子化也将加速发展。与此同时,对应的被动部件也将不断地向小型化,生产自动化,SMD化演变。可以预计未来的需求会越来越大。




上一页 1 2 下一页

评论


相关推荐

技术专区

关闭