新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 研究锂亚电池内阻与容量的关系

研究锂亚电池内阻与容量的关系

作者:时间:2012-07-05来源:网络收藏

  高比能量锂/亚硫酰氯(Li/SOCl2)电池广泛应用于多功能智能仪表(如智能电表、水表等),作为实时时钟和记忆备份电源。由于Li/SOCl2电池输出电压非常稳定,在90%电量放出来之前,电池电压保持不变,因此不能用常规的监测电池电压变化方法监测电池的剩余。电池剩余的监测直接影响到仪表数据的安全,因此Li/SOCl2电池剩余监测方法的研究受到电池应用机构和生产机构的广泛关注,提出的解决方法主要可以分为两种:一是改变电池内部结构设计,例如美国WilsON Greatbatch、Schlumberger等公司都提出在电池内部设计多组不同类型的电极,使每种电极放电结束时都产生一个大的电压变化,从而预测电池可用的剩余容量;第二种方法是对电池放电过程中所产生的各种物理性质变化进行研究,以期获得剩余容量与这些物理参数之间的变化关系,例如,Papazia等人提出监测电池内部电解液介电常数的变化来监测Li/SOCl2电池的剩余容量;Lukovtsev等人通过比较交流阻抗谱实部、虚部、相角的变化来研究这些参数与Li/SOCl2电池剩余容量之间的关系。但由于各个厂家Li/SOCl2电池结构设计、电池配方及生产工艺的不同,使得这些物理参数变化规律的差异很大,至今无论在电池设计方面,还是在电子监测方案方面,都还没有找到Li/SOCl2电池剩余容量监测的适合方法,成为Li/SOCl2电池应用的重要障碍之一。本文拟通过对电池放电过程中的变化进行分析,以期获得对剩余容量监测方法有益的线索。

  1 实验

  1.1 实体电池制作

  采用碳包式结构,制作ERl4250型Li/SOCl2实体电池。

  正极为使用乙炔黑制作的圆柱型多孑L电极,集流体为金属镍针,负极为纯锂片,隔膜使用玻璃纤维无纺布,电解液为1.2mol/LLiAlCI的SOCl2溶液,并充有约8%的S02。电池外壳均使用不锈钢材料。

  1.2 电池和电化学阻抗谱测试

  在室温25℃下,将电池进行恒电阻放电,放电电阻分别为3.48 k12和330 n(相当于1 rnA和10 mA放电),记录放电过程中电压变化,并且每隔一段时间断开电阻并静置2 h后,测试电池。采用DMS--20型电池内阻测试仪(南京达明仪器公司)测试电池1 000 Hz频率下的交流阻抗,仪器输出阻抗实部,即为本文所说的内阻。电池放电终止电压为2.0V。

  并采用荷兰Autolab电化学工作站进行了电池电化学阻抗谱测试。施加正弦电位信号幅值5 mV,测试频率5 mHz~20 kI-Iz,测试电池在开路电位下的EIS谱。

  所有试验电池均经过45℃5 d,再常温1个月的贮存,以使电池性质稳定。

  1.3 电解液电导率测试

  配置不同LiAlCI。浓度的电解液,使用DDS一11A型电导率仪(上海雷磁仪器厂)测试电解液的电导率,电极为DS.10型光亮铂电极。

  电池制作及电导率测试均在相对湿度l%以下的手套箱中完成。

  2 结果与讨论

  2.1 电池内阻的组成分析及1 000 Hz频率下电池内阻

  Li/SOCl2电池负极为金属锂片,正极为多孔碳电极,电池的欧姆内阻Rn包括电池内部的电极、集流体、隔膜、电解液、钢壳等组成部分的电阻,会随着电解液和电极的改变而改变。将多孔碳电极看作由若干导电网络相互交叠形成的结构时,多孔碳电极电阻包含由固相导电粒子组成的电子导电网络电阻pS和固相间隙的电解质网络中的溶液电阻pL。在固相电子导电良好的多孔电极中,通常有p。PL。如果不考虑集流体与碳电极之间、隔膜与正负两极之间的接触电阻,并忽略ps时,电池内阻可以描述为如图l中所示的等效元件。

电池等效电路

图1 电池等效电路

  图1中,R……为溶液电阻,如。和G。为负极锂片/电解液两相界面之间电荷转移电阻和双电层电容,z为多孔电极中固、液相之间电化学反应的电阻,电子通过这一电阻在固、液相之间转移,G:为多孑L电极中固液相界面双电层电容,其中民,和z的大小分别取决于负极锂片表面和多孔碳电极外表面所处的状态。

  Li/SOCl2电池在储存过程中,负极锂片上会形成一层钝化膜(主要成分是LiCl),使锂片表面电子传递阻力心。增大,并随着储存时间的延长和储存温度的升高钝化膜厚度增加。常温1个月存放的电池阻抗谱如图2中曲线1,表现高频端大的圆弧半径,经50 mA电流15 rain短时间放电后高频端圆弧半径大大减小(曲线2),而再经常温2个月的存放后高频端圆弧又明显增大(如曲线2),这说明经存放的电池的EIS谱中高频端圆弧大小反映了负极锂片表面钝化膜和电荷转移电阻,50 mA电流15 min放电后钝化膜已被消除,由此可知经储存过的电池阻抗主要由负极锂片钝化膜决定。图2中出现的第二个压扁的圆弧可能是受膜本身的结构和性质影响。图3为同一电池放电过程中电池阻抗谱变化,可以看出,电池阻抗谱中出现的第二个圆弧随放电的深入越来越明显,并且在放电后期越来越大,据报道,圆弧的大小反映了多孑L碳电极的状态和性质。

研究锂亚电池内阻与容量的关系

图2 同一电池50 mA 15 min放电前后阻抗谱

研究锂亚电池内阻与容量的关系

图3 同一电池1 O mA放电过程中阻抗谱变化(%—荷电状态)

  1 000 Hz频率阻抗均位于高频区圆弧左侧,实部包含了两极间的溶液电阻和一定程度上的电荷转移电阻。对未放电的电池,1 000 Hz频率下的电池内阻主要反映了负极钝化膜心。的情况,而经放电活化使钝化膜消除之后的电池,1 000Hz频率下的电池内阻主要反映多孔碳电极z的情况。

  2.2 放电过程中电池内阻的变化规律

  图4和图5分别是3.48 kn和330 n恒阻放电过程中电池内阻变化测试结果,可以看出,放电过程中电池内阻变化规律一致,即具有高初始内阻的试验电池,随着放电的进行,电池内阻均恢复到6~9 Q之间,并且在放电容量低于0.8 Ah时,电池内阻几乎保持不变,在放电容量大于O.8 Ah时,才明显增大。由前面分析可知,放电开始时的高内阻主要是由负极钝化膜的存在造成的,随着短时间的放电,钝化膜迅速被消除,内阻很快减小,由正负两极间电阻和碳电极外表面大小及状态决定。所测试电池均出现了内阻先增加后减小的现象,这可能是由于不溶性LiCl和S产物不断沉积到碳包孔隙,引起碳包膨胀裂开,出现新的活性表面造成的。

研究锂亚电池内阻与容量的关系

图4 3.48 kQ放电过程中电池内阻与放电容量之间的关系

研究锂亚电池内阻与容量的关系

图5 330 n放电过程中电池内阻与放电容量之间的关系

  电池的剩余容量等于给定放电电流下电池实际放出的最大容量减去此时的放电容量。额定容量为1.2 Ah的ERl4250型电池,在常温3.48 kQ放电条件下,能够放出最大的窬量为1.2 Ah,在330 n放电条件下可以放出的最大容量约1.0 Ah,在图4和图5中,电池内阻的明显增加均在实际放电容量为0.8 Ah时,以额定容量1.2 Ah计,此时电池剩余容量为0.4 Ah,约为电池总容量的30%。由于电池内阻在放电容量为0.8 Ah之前,几乎保持不变,说明电池内阻与此时电池放电容量没有关系。在放电容量高于0.8 Ah之后,即剩余容量为0.4 Ah时,电池内阻明显增大,这就有可能以此时电池内阻的明显增大现象来估测电池30%的剩余容量。图4和图5中,无论电池放电电流大小,在放电容量为O.8 Ah时内阻明显增大,表明电池内部发生了相同量的电化学反应,那么是电池内部的什么变化造成内阻的升高呢?我们从以下三个方面分析了电池内部发生的一系列变化。

  2.3 影响电池内阻变化的因素分析

  2.3.1 多孔碳电极的变化

  表1可知,多孔碳电极电阻包括与电解液界面电极反应电阻即电荷转移电阻z和固相间隙的液相电阻pL。SOCl2的电化学还原发生在电解液/碳电极界面,SOCl2还原的难易主要取决于多孔碳电极活性表面的大小及状态,同时还受电解液中SOCl2的活化浓度、液相传质等冈素的影响。为了比较放电前后多孔碳电极的状态变化,表1列出了试验电池放电前电池内部的一些主要参数,


上一页 1 2 下一页

关键词: 锂亚电池 内阻 容量

评论


相关推荐

技术专区

关闭