新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 如何设计5V高电压锂离子电池

如何设计5V高电压锂离子电池

作者:时间:2013-04-26来源:网络收藏
性能和循环稳定性。

  Ooms等人[6]发现,掺杂Mg能提高LiNi0.5Mn1.5O4的结构稳定性。通过溶胶-凝胶法和固态反应制备的LiMgxNi0.5-xMn1.5O4(x《0.1),在0.1C速率下充放电容量接近理论值(大于120 mAh/g)。Locati等人[7]制备的纳米级LiMg0.05Ni0.45Mn1.5O4,在室温下具有约10-6 S/cm的电导率,从而具有良好的快速充放电性能,0.1C速率下容量为131 mAh/g,1C速率下容量为117 mAh/g。

  Liu等人[8]制备了掺杂不同含量Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和 LiMn1.5Ni0.34Fe0.16O4。未掺杂LiNi0.5Mn1.5O4的在C/6速率下容量为?130 mAh/g,循环50次后容量保持为92%;而掺杂Fe的LiMn1.5Ni0.42Fe0.08O4,LiMn1.42Ni0.42Fe0.16O4,和 LiMn1.5Ni0.34Fe0.16O4容量分别为136,131,和127 mAh/g,且100次循环后容量仍保留100%。电化学阻抗谱(EIS)显示掺杂Fe后,表面阻抗降低;X射线光电子能谱(XPS)显示表面的Fe含量高于芯部,而表面的Ni含量低于芯部,Fe相比于Ni具有更低的反应活性,因而抑制了有害反应和固液界面层的形成。

  Co也是报道较多的一种有效掺杂元素[9-12]。Oh等人[11]制备了Co掺杂Li[Ni0.5Co0.05Mn1.45]O4,其放电容量在5C速率时达118 mAh/g,10C速率时为103 mAh/g;而未掺杂在5C和10C速率下放电容量仅分别为100 mAh/g和10 mAh/g。

  掺杂Cr也能有效地提高LiNi0.5Mn1.5O4的电化学性能。Liu等人[13]用溶胶凝胶法制备LiCr0.1Ni0.4Mn1.5O4,并获得更好的高速充放电性能和循环性能。Arunkumar等人[14]制备的LiMn1.5-0.5yNi0.5-yCryO4在4.2-容量为128 mAh/g,且50次循环后保留98%的容量,均高于未掺杂的LiNi0.5Mn1.5O4(118 mAh/g,50次循环后容量保留92%)。最近,Aklalouch等人[15]制备的650 纳米大小的单晶LiMn1.4Ni0.4Cr0.2O4在1C的速率下容量可达142 mAh/g,高达60C的速率下25oC温度下放电容量仍可达到131 mAh/g,55℃时容量为123 mAh/g,且55℃下循环50次循环后容量保留98.7%。

  Ti[16-18]和Ru[19]也被发现可提高的高速充放电性能和循环性能。Kim等人[17]发现掺杂Ti能提高充放电电压、提高锂离子扩散速率、并获得更好的高速充放电性能。Wang等人[19]制备的Ru掺杂 Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4比未掺杂LiNi0.5Mn1.5O4具有更好的高速充放电性能和循环性能。Li1.1Ni0.35Ru0.05Mn1.5O4和LiNi0.4Ru0.05Mn1.5O4在10 C的放电容量分别为108 mAh/g和117 mAh/g,且500次循环后仍能分别保留91%和84%的容量。

  除了掺杂上述阳离子替代部分Ni或者Mn之外,掺杂氟离子以替代部分氧离子也可大大提高LiNi0.5Mn1.5O4的电化学性能[20-22]。在电解液中由于微量HF的存在而与电极材料发生反应,溶解部分Ni或者Mn离子,恶化电化学性能,而掺杂氟离子则可有效的抑制这种破坏反应。Xu等人[22]制备的掺杂氟 LiNi0.5Mn1.5O3.975F0.05在3.-5.2V间充放电容量为140 mAh/g,高于未掺杂的130 mAh/g,且40次循环后容量保留为95%。

  3.1.2 涂层

  由于 LiNi0.5Mn1.5O4具有的高充放电电压,其与电解液之间发生的反应会氧化电解液形成固液界面层,同时电解液中的HF会溶解部分Ni和Mn离子,从而使得电极材料的充放电容量下降,循环性能恶化。表面改性或表面涂层是研究较多的一种改善活性材料性能的有效手段。在活性材料颗粒表面形成氧化物(MOx)或者金属磷酸物(MxPO4),能有效的一方面能提供一层物理阻碍膜避免电解液与活性颗粒的直接接触;另一方面氧化物能与电解液中的HF发生反应而消耗掉HF,减少HF对活性颗粒的攻击。金属氧化物涂层ZnO[23-24],ZrO2[25],Al2O3[26]等能有效的提高 LiNi0.5Mn1.5O4的电化学性能。表面具有ZnO涂层的LiNi0.5Mn1.5O4容量达到137 mAh/g,且在55℃温度下50次循环后几乎没有容量的下降[23]。Liu等人[26]在LiMn1.42Ni0.42Co0.16O4表面分别涂覆较均匀的约10 nm厚度的Al2O3,Bi2O3,ZnO,AlPO4,均能大大提高快速充放电性能和循环充放电性能。由于电解液中微量水分的存在而提供H+形成 HF,HF与活性颗粒的反应会进一步的产生水分,从而使性能大大恶化,而氧化物的涂层能消耗HF且抑制固液界面层的形成,从而提高性能。 Li3PO4[27]也被报道能提高LiNi0.5Mn1.5O4的高速充放电性能和循环性能。Li3PO4除了作为物理保护膜外,本身即是固液界面层,因而提高了LiNi0.5Mn1.5O4的电化学性能。

  使用涂层改进活性颗粒的电化学性能也有局限之处。一方面,表面涂层增加了活性材料制备的工序,从而增加了电极材料制备的成本;另一方面,很难在亚微米级或者甚至纳米级的活性颗粒表面形成均匀的完全覆盖的保护性表面涂层。相比而言,掺杂手段则更容易制备且不引进复杂的制备工序。

  3.2 LiMPO4(M= Co,Ni)

  类橄榄石晶体结构的LiMPO4(M= Co,Ni),也是一类极具开发潜力的电极材料。LiNiPO4具有最高的充放电电压,约为~5.2V,但目前还尚未开发出能与之匹配的电解液,因而还未见LiNiPO4在5.2 V充放电的电化学性能的相关报道。Manickam等人[28]使用LiOH水溶液作为电解液,Hg/HgO作为参比电极,Sn作为反电极,从而在较低电势下(对比Sn在~1.充电,~0.5放电)得出了LiNiPO4的充放电曲线。

  LiCoPO4 具有4.8V的充放电电压,

电化学工作站相关文章:电化学工作站原理
离子色谱仪相关文章:离子色谱仪原理


评论


相关推荐

技术专区

关闭