新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 直面风力发电设计挑战

直面风力发电设计挑战

作者:时间:2013-08-06来源:网络收藏
PrimePack是一种新的大电流IGBT模块,内.部寄生电感很小,功率和温度循环周次高,其目标市场之一就是应用。

直面风力发电设计挑战

IXYS则偏好整流二极管。Bradley Green说:“每种二极管都有它自己的特性,因此不同的客户可能为某一应用选择不同类的二极管。不过,风机有二个简单的要求:最高的可靠性和大功率处理能力。在5-6MW功率级别上,这些基本要求使得你只能选择陶瓷封装二极管。”

最近,IXYS专门针对像这样的高电压应用开发出了额定工作电压高达3400V的模块MDD75-34N1,它含有两个二极管,每个二极管在外壳温度为100℃时的平均额定电流为175A。它通常应用在系统前端的整流级。

“对于2500V以上的高效率大功率整流应用而言,这一新系列产品代表着一个巨大的技术突破,”Bradley Green表示,“我们的大多数竞争对手现在仍在为提高2000V以上产品的可靠性而伤脑筋,这一3400V模块的推出进一步凸显了IXYS在双极高电压大功率领域长期以来的市场领导地位。”

要求可靠性更高IGBT

风电是一种极其不稳定的能源,风的强度每分种都在变化,一天中风力也不一样,而且一年四季可能会面临极端高温、低温以及飓风。作为风能的变换和控制关键器件,IGBT模块会承受功率和温度的频繁变化,这会使得IGBT寿命缩短。在 IEC60747中,IGBT模块的重要可靠性指标就是功率周次和温度周次。

由于风电系统的需求把功率逆流器输出功率提到了一个新高度,这就需要新的功率半导体技术和模块封装技术来降低损耗,提高效率和实现更高的功率密度。

陈子颖表示:“我们第.四.代IGBT4模块的最高工作结温已从125度提高到了150度,这使得系统能效比有了显著的提高。目前采用IGBT4芯片的英飞凌IGBT模块功率周次比上一代产品在相同工作条件下提高了5倍,新的封装形式(如PrimePack)温度周次提高了7倍。”

IXYS公司全球销售副总裁Bradley Green也指出:“在许多风电应用场合,普通塑封IGBT模块的可靠性和效率已经无法满足系统的可靠性要求,必须采用可靠性更高的陶瓷压接式IGBT。”

IXYS公司全球销售副总裁Bradley Green指出:“在许多风电应用场合,必须采用陶瓷压接式IGBT。”

他说:“我们的SPT+ Press-Pack IGBT产品是5.5-6MW功率级别风力发电机设计的基础。由于昂贵的安装成本缘故,这一功率级别要求极高的可靠性。尽管竞争对手在这一功率级别也能提供替代技术解决方案,但我们不相信它们的产品能够在系统级质量和可靠性上满足这一级别风力发电机的要求。”

与前一代产品相比,采用最新SPT+技术的新一代Press-Pack IGBT具有更大的安全工作区间,导通状态损耗也降低了约25%。IXYS的全资英国子公司Westcode开发的Press-Pack IGBT采用完全密封压接陶瓷封装,以确保其市场领先的在兆瓦级大功率应用中的可靠性,在这类应用中,效率和可靠性是最重要的。

“随着Press-Pack IGBT进入成熟的大规模生产阶段,”IXYS公司国际销售副总裁Bradley Green说,“将SPT+技术集成进Press-Pack IGBT就是合乎逻辑的下一步骤,因为这可以进一步提升效率和产品系列的坚固性。随着大功率应用(如风力发电机)对高功率密度和最高级别可靠性的要求越来越高,Westcode已经看到市场正在快速接受我们的产品。”

SPT+ Press-Pack IGBT系列的集电极电流范围从240A到2400A,集电极发射极电压可到4500V。T2400GB45E是新一代SPT+ Press-Pack IGBT系列的一个例子,它是一个2.4kA、4.5kV的Press-Pack IGBT,采用外部直径为168毫米的陶瓷封装。Westcode还提供将一个内.部二极管与IGBT做在一个封装内的产品。

Press-Pack IGBT完全没有模块化设计所固有的可靠性缺点,如引线邦定或luo片焊接工艺,它在大功率应用中的可靠性已经被证明是业内最佳的。Westcode还提供一个互补性的大功率SONIC二极管系列,它的速度和软开关能力可理想地匹配IGBT,他们组合起来可提供一个针对大功率应用的有吸引力的解决方案。

Bradley Green说:“在风机内,大功率SONIC二极管(快速恢复超软)主要设计用作与陶瓷封装IGBT配对的续流二极管。”

英飞凌目前除了为风电市场提供IGBT产品外,还提供功能完善的系统功率元件,包括IGBT模块、驱动保护、滤波电容、直流总线、散热器等,客户只要设计控制板就可以完成一个完整逆变器的开发工作。陈子颖说:“我们已成功地把这一产品引进到中.国,使国内风电厂商自主逆变器的开发速度大大提高,从而帮助他们解决了风电供应链上最大的瓶颈问题。未来我们会致力于加强IGBT模块在风电市场中的推广和技术支持工作,帮助国内变流器厂商开发出基于IGBT模块的高可靠性、低成本产品。”

但对于超大功率风机,我们一般需要使用晶闸管来作为逆变器的功率元件,因为工作在非常大功率的风电机通常含有很多储存的电能。不管它们是储存在电容库还是马达/变压器绕组上,这一电能都可能是极具破.坏性的,并给系统带来了一个很大的技术难题。与IGBT或其它解决方案相比,晶闸管具有极高的电流浪涌额度和更高的热质量。对于一些主要设计目标不是效率而是鲁棒性和长寿命的风电机来说,晶闸管可能是最好的技术选择。

上述储存在电容库和绕组中的电能在紧急情况下必须放掉。这些放电应用会在电路中的任一电能存储位置上形成一个受控短路。在这些应用中一般不采用IGBT,因为IGBT的抗浪涌电流额度值不高和成本太贵。而晶闸管具有极高的电流浪涌额定值,因此它在任一要求叶片以最佳发电速度旋转的“软启动”应用中仍受青睐。

并网同步晶闸管选择

不少风电系统还在使用晶闸管实现逆变器输出交流电与电网交流电的同步。由于电网交流电的频率并不高,因此我们一般选择相位控制晶闸管而不是快速开关晶闸管。

Bradley Green表示:“晶闸管的设计简单地对应工作的频率。今天,快速开关晶闸管主要用于5-10KHz应用,针对50到100Hz应用的相位控制晶闸管具有更好的电流浪涌额度,这常常比更高的开关速度更吸引人。”

Westcode目前已针对大功率风电应用开发出新的6500V相位控制晶闸管。针对低正向传导损耗进行优化设计的该新器件,具有1695A的标称RMS额定电流和10.5kA的浪涌电流额定值。该晶闸管采用47毫米极面密封压接封装,使用了Westcode先进无合金工艺。

当与相同电压级别的类似器件比较时,为得到非常低的导通态电压而优化设计的该相位控制晶闸管在1000A电流流过时的正向压降只有2V。

防雷元件选择

安装在野外的风力发电系统必须安装防雷系统。雷击会产生瞬间的过电压,即在微秒至毫秒内会产生高达 6KV伏的尖峰冲击电压。当雷击发生时,强大的电流会通过各种途径间接或直接地侵入机房设备使其损坏。据测定雷电电流可达20万安培,既使是造成直接危害的二次感应电流也达l万安培。因此风力发电系统必须采用合适的防过压和过流元件来抵抗雷电的冲击。

风力发电系统需要进行不同等级防雷保护的基本组件有:风力涡轮机、逆变器、控制风力涡轮机叶片间距和方位的电机、以及用于监测和控制的低电压电路板。

Littelfuse公司业务和技术开发经理Jim Colby指出:“风力涡轮机遭受雷击的风险很高,因此需要可靠的防雷保护。这可以采用能抵抗几千安培浪涌电流冲击的金属氧化物压敏电阻(MOV)来达到保护目的。这些MOV可以制造成34毫米或更大的盘,从而可以耗散大量浪涌能量。”

理论上,可以采用两类过压保护元件(即钳位元件和开关元件)为风电应用提供过压保护。钳位元件有MOV和TVS二极管,它们可在工作时允许小于规定钳位水平的电压通过负载。开关元件主要有气体放电管(GDT)和晶闸管浪涌电压抑制器,它们对超过突破电压的浪涌所作出的反应与分流元件相同。

开关元件相对于钳位元件的优势是,在动作状态下,当它把有害浪涌电流导出负载时,出现在负载上的电压极小;而钳位元件仍保持钳位电压。因此,开关元件中耗散的功率远远低于钳位元件。因此,Tyco电子认为,第一级防雷元件最好选择GDT,第二级防雷元件最好选择晶闸管浪涌电压抑制器。过流保护最好采用可复位的PolySwitch元件,与一次性熔断器相比,它可避免经常更换器件的麻烦,从而可大幅降低维护成本。

逆变器的AC端直接连到电网,因此它曝露于电网传导的雷击危险之下。Jim表示,它的雷击防护可采用中等级别的MOV,它们可以是14mm或20mm的盘。

用于叶片间距或方位控制电机由二级电源电路控制,它们受到的雷击浪涌电流比较有限,因此

风力发电机相关文章:风力发电机原理


评论


相关推荐

技术专区

关闭