新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 如何有效实现开关电源的待机低功耗的设计方案

如何有效实现开关电源的待机低功耗的设计方案

作者:时间:2014-01-23来源:网络收藏
; word-wrap: break-word; text-indent: 2em; line-height: 24px; color: rgb(62, 62, 62); font-family: Tahoma, Arial, sans-serif; font-size: 14px; ">3、切换工作模式

本文引用地址:http://www.eepw.com.cn/article/226694.htm

3.1、QR→PWM

对于工作在高频工作模式的,在待机时切换至低频工作模式可减小待机损耗。例如,对于准谐振式(工作频率为几百kHz到几MHz),可在待机时切换至低频的脉宽调制控制模式PWM(几十kHz)。

如何有效实现开关电源的待机低功耗的设计方案

图4 由IRIS4015构成的QR/PWM反激式电源电路

IRIS40xx芯片就是通过QR与PWM切换来提高待机效率的。图4是IRIS4015构成的反激式,重载时,辅助绕组电压大,R1分压大于 0.6V,Q1导通,辅助准谐振信号经过D1,D2,R3,C2构成的延时电路到达IRIS4015的FB脚,内部比较器对该信号进行比较,电路工作在准谐振模式。当电源处于轻载和待机时候,辅助绕组电压较小,Q1关断,谐振信号不能传输至FB端,FB电压小于芯片内部的一个门限电压,不能触发准谐振模式,电路则工作在更低频的脉宽调制控制模式。3.2、PWM→PFM

对于额定功率时工作在PWM模式的开关电源,也可以通过切换至PFM模式提高待机效率,即固定开通时间,调节关断时间,负载越低,关断时间越长,工作频率也越低。图5是采用NS公司的LM2618控制的Buck转换器电路和分别采用PWM和PFM控制方法的效率比较曲线。由图可见,在轻载时采用PFM 模式的电源效率明显大于采用PWM模式时的效率,且负载越低,PFM效率优势越明显。将待机信号加在其PW/引脚上,在额定负载条件下,该引脚为高电平,电路工作PWM模式,当负载低于某个阈值时,该引脚被拉为低电平,电路工作在PFM模式。实现PWM和PFM的切换,也就提高了轻载和待机状态时的电源效率。

如何有效实现开关电源的待机低功耗的设计方案

图5

通过降低时钟频率和切换工作模式实现降低待机工作频率,提高待机效率,可保持控制器一直在运作,在整个负载范围中,输出都能被妥善的调节。即使负载从零激增至满负载的情况下,能够快速反应,反之亦然。输出电压降和过冲值都保持在允许范围内。

4、可控脉冲模式(Burst Mode)

可控脉冲模式,也可称为跳周期控制模式(Skip Cycle Mode)是指当处于轻载或待机条件时,由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,如图6所示。这样即可实现恒定频率下通过减小开关次数,增大占空比来提高轻载和待机的效率。该信号可以加在反馈通道,PWM信号输出通道,PWM芯片的使能引脚(如 LM2618,L6565)或者是芯片内部模块(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。

如何有效实现开关电源的待机低功耗的设计方案

图6

NCP1200的内部跳周期模块结构见图7,当反馈检测脚FB的电压低于1.2V(该值可编程)时,跳周期比较器控制Q触发器,使输出关闭若干时钟周期,也即跳过若干个周期,负载越轻,跳过的周期也越多。为免音频噪音,只有在峰值电流降至某个设定值时,跳周期模式才有效。

如何有效实现开关电源的待机低功耗的设计方案

图7 NCP1200跳周期模块结构

而FSD200则是通过控制内部驱动器实现可控脉冲模式,即将脚的反馈电压与0.6V/0.5V迟滞比较器比较,由比较结果控制门极驱动输出,其结构可见图8。我们可根据此原理用分立元件实现普通芯片的Burst Mode功能,即检测次级电压判断电源是否处于待机状态,通过迟滞比较器,控制芯片输出,电路如图9所示。

如何有效实现开关电源的待机<a class=低功耗" style="borde



评论


相关推荐

技术专区

关闭