新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 推荐几本可有效提升模拟设计水平的好书

推荐几本可有效提升模拟设计水平的好书

作者:时间:2014-01-26来源:网络收藏

引言

本文引用地址:http://www.eepw.com.cn/article/226632.htm

多路输出技术中一个重要性能指标就是负载交叉调整率的问题,我们通常采用变压器副边多个绕组的方法来实现多路输出。但是这种方法一般只采样一路主输出进行反馈调节控制,因此交叉调整性能较差。改善多路输出开关电源交叉调整率的方法可分为无源和有源两类。本文首先介绍了几种传统的多路输出技术,并对其进行了简单的分析和总结。重点介绍了两种新的多路输出技术:恒流源实现多路输出和PWM—PD多路输出技术。结合典型拓扑探讨了PWM—PD技术的应用前景。

1 传统的多路输出方法

1)无源调节

无源调节通过在次级增加一些简单的无源器件可以使负载交叉调整率得到一定的改善。无源调节包括耦合电感调节控制和加权电压反馈调节控制两种,如图1所示。前者通过将输出电感L1、L2绕在同一磁芯上,相当于增大了滤波电感,使辅输出稳压,从而使负载交错性能得到一定改善。加权电压反馈调节同时检测反馈几路输出电压加权和到控制电路中,通过合理设计各路输出反馈电压的加权因子,调整各路输出电压。这两种方法都存在调节误差。但它们实现起来比较简单,不增加电路的复杂性,适用于对输出电压精度要求较低的场合。

2)有源调节

有源调节也可称为次级后置装置调节,即通过在变压器副边加入一级有源调节装置对次级整流电路进行调整来实现对辅输出电压的调整。以正激电路为例,图2给出了五种不同类型的次级后置装置调节方式,他们具有各自的优缺点。表l给出了不同类型调节方式在电路结构、效率、性价比、调整率以及应用场合等方面的特性比较。

2 新颖的多路输出技术

1)恒流源实现多路输出技术

传统的多路输出技术存在交叉调整率较差或者电路过于复杂等问题,恒流源多路输出技术通过对几个控制开关的简单控制可很好的实现对不同负载的供电。

(1)工作原理

图3给出了恒流源实现多路输出的基本工作原理。如图所示,多个平行负载分别通过一个输出控制开关接在恒流源的后级,采用分时复用(TM)的方法,每个输出开关在一个开关周期内只有一段间隔时间与电流源连接,通过控制开关的开通和关断时间可以控制每路输出电容上的电压值,实现多路输出电压。该恒流源可以用平均电流控制型Buck,Buck—Boost,SEPIC,反激等单电感PWM DC—DC变换器来实现,如果输入输出需要电气隔离则可用正激变换器拓扑。根据不同的电路拓扑,电路可工作在断续(DCM)模式,也可工作在连续(CCM)模式,还能实现输出的双极性。

(2)控制方法

输出开关S1、S2、S3的占空比控制有几种控制方法。一种是滞后控制,如图4所示。t1时间内第一路输出电压Uo1低于其下限值时,S1导通,电流源对输出电容C1充电,输出电压逐渐升高,当达到它的上限电压值时,S1关断。当S1、S2、S3都关断,没有任何负载与恒流源接通时,Sr导通,恒流源通过Sr续流。每路输出与恒流源的导通时间在一定范围内取决于它的滞后带宽。采用滞后控制的功率开关管开关频率是不断变化的,不利于电路参数的设计。

电压反馈控制是另一种更可取的方法,对各个开关进行恒频脉宽调制控制,各路输出开关的控制信号应选用同一斜坡信号以保持同步。以两路输出的Buck变换器为例,如图5所示。VT1和VT2,VTr和VT1,VTr和VT2的驱动信号之间须有一定的死区。


上一页 1 2 下一页

关键词: 模拟设计

评论


相关推荐

技术专区

关闭