新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 空间太阳望远镜图像锁定系统中的应用

空间太阳望远镜图像锁定系统中的应用

作者:时间:2008-11-28来源:网络收藏

  2 系统实现

  系统原理如图1所示,整个运算处理单元分为三部分:存储单元(两个输入/运算存储器、一个输出存储器及旋转因子存储器)、蝶形运算单元、地址产生器。

  2.1 存储器

  本系统实时接收前端CCD相机的图像。为保证CCD相机采集图像的准确率,图像的每一行、每一帧之间都必须有一定的时间间隔,故采用两个存储单元作为输入数据和中间数据的暂存单元(如图1所示),以节省时间实现实时处理。当系统工作时,将图像存入存储器、计算上一次采集的图像、将存储器中的结果输出,这三个工作同时进行,用简单的流水方式减少存储数据所需的时间。旋转因子则预先存储在器件的内置ROM中。根据级数不同选用不同的因子。

  2.2 蝶形运算单元

  一个基-2蝶形运算由一个复乘和两个复加(减)组成,采用完全并行运算,进一步分解为四个实数乘法,六个实数加(减)法,分三级并行完成,加上前后输入输出的数据锁存,共需要6个时钟周期。32点的需要16×5=80个基-2的蝶形运算,一幅图像一共是32行32列,不考虑不需要做乘法的蝶形运算,一路串行共需要6×80×32×2=30720个时钟周期,采用频率为10MHz的时钟,即为3ms。对于蝶形运算的第一、第二级都可以由不带乘法器的蝶形结构来实现同步并行运算,每一个蝶形运算加上前后的数据锁存仅需4个时钟周期即可完成;对于第三、第四、第五级,由于带乘法器不带乘法器的两种蝶形运算结构同时存在,必须加入等待时间才可以实现严格同步。同时由于各级计算时间不同,所以不能实现深度流水。因此,采用多路并行及部分流水,在时间上即可满足系统要求。

  上面讨论了当运算从一级转到另一级时,序列中数值的幅度一般会增大。因而,运算方法是在内循环中作溢出监测。如果没有溢出,则计算照常进行;若有溢出,则把产生溢出的数据右移,一直到没有溢出为止。记录下移位的次数(0、1或2),并把整个序列右移同样位数,移位总数进行累计,累计数的负值作为2的幂,由此得出最终序列的总的比例因子。比例因子s由下式定义[6][7]:

基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用

  这里bi为比例参数。

  k=0,1,2,…,N-1  (6)

  根据公式(6),的最终结果要除以比例因子。式中x(n)为原始数据,X(k)为除以比例因子之前的结果,X‘(k)为最终结果,1/s为比例因子的倒数。

  如图2所示,对于一个基-2蝶形单元,当从存储器中读取的Bbit输入数据进入蝶形运算单元PE1后,经过乘法运算(MU1)乘以旋转因子,数据变为(B+Bω)bit,然后作加(减)法,得到蝶形运算结果(B+Bω+1)bit。为防止溢出,进行移位操作。M1、M2为比例选择器,根据不同的级数,选择不同的比例因子。最后,输出数据再放回到存储器中。

基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用

  3 器件选择

  本设计采用XILINX公司的VERIEX系列XCV300-4HQ240芯片。该芯片有丰富的可配置逻辑模块CLBs(Configurable Logic Blocks)、大量的触发器以及内置的不占系统资源的块RAM。系统最大工作频率可达200MHz,兼容多种接口标准,有相应的航天级产品,是目前市场上为数不多的能达到此项要求的高性能可编程逻辑器件。

  VERTEX系列器件的一个显著特点是内置的延迟锁相环DLL(Delay-Locked Loop),它可以减少时钟传输的衰减,每一个DLL可以驱动两个全局时钟信号。DLL可以倍频,或者1.5、2、2.5、3、4、5、8以及16分频。VERTEX系列器件内部的4-输入查找表LUTs(Look-Up Tables)也具有多种功能:可以作为16 ×1bit的同步RAM,而且一个块(Slice)中的两个LUTs可以组合成一个16×2bit或者一个32×1bit的同步RAM或者一个16×1bit的同步多口RAM。另外,LUTs还可作为一个16bit的移位寄存器使用,该寄存器用来获取高速或者突发数据非常理想,特别适用于数字图像处理中的数据存储[8]。

  本设计充分利用了VERTEX器件的LUTs替代触发器和基本门电路搭建乘法器和加法器这两个显著的结构特点,节省大量触发器资源,避免了缺少触发器而LUTs大量剩余的尴尬;增加了器件利用率、布通率,降低布线延迟。由于本系统最终用于空间太阳望远镜,所以板上时钟频率不可超过20MHz。但基于地面测试的需要,特利用DLL对外部时钟信号进行了倍频,以提高芯片内部的运行速度。

  本设计利用易于实现并行运算的特点实现专用的FFT处理芯片,解决了在轨实时大数据量图像处理与航天级运算速度不足之间的矛盾,提高了系统实时处理能力。两维FFT不到400μs即可完成,高于航天级(A21020)1.5ms的处理速度。对太阳米粒组织图像进行处理(实验数据如表1所示),结果显示数据误差都在1%左右。这样的误差满足空间太阳望远镜中的相关摆镜的系统要求。实验证明用高性能实现空间化的FFT处理芯片是完全可行的。

  表1 实验数据

序 号原始数据浮点数据定点数据误差%序 号原始数据浮点数据定点数据误差%
1-327684201044193280.181719072504851201.43
2-327681542981550080.461818704594360161.23
3721697679983040.641918796944596001.64
4148001062241066880.44201915226885272001.17
51608093313937600.48211630431028312320.66
61984076389768000.54221475233592336000.02
72310465472656720.68231457638986391680.47
820000604403606720.45241520058786591360.60
91910469973704000.6125816039973704000.61
102337658786591360.6026704860403607360.55
112012838986391040.30271438465472659200.68
121868833592336000.02281158476389768000.54
131968031028312320.66291147293313937600.48
141953626885272001.1730114561062241067520.50
1519680944596001.64311176097679983040.64
1618720594360161.2332114881542981549440.42

上一页 1 2 下一页

关键词: FPGA FFT DSP 并行处理

评论


相关推荐

技术专区

关闭