新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 一种通用数据采集系统的设计方案

一种通用数据采集系统的设计方案

作者:秩名时间:2014-02-13来源:摘自《电子发烧友》收藏

  2 硬件设计

本文引用地址:http://www.eepw.com.cn/article/221483.htm

  以前端接口板a的实现为例,其主要构成为16位的D/A转换器DAC7731模块、14位A/D转换器TLC3574模块及其他辅助电路。

  2.1 D/A转换电路

  DAC7731 为16 位的数字模拟转换芯片,其内部提供+10 V 的参考电压。将其模拟量输出通过引脚设置为-10~+10 V 的电压范围。DAC7731 具有带双缓冲的标准三线SPI串行接口,允许模拟输出的异步更新。如图3 所示,它还有一个串行数据输出线以实现多片DAC7731的链接。系统工作时由图形化编程开发平台通过生成和发送DAC7731芯片的SPI接口和时序控制信号,通过SDI信号依次将需要转换的数据以从最后一片到第一片的顺序发送给每片DAC7731,之后通过C-S 和LADC 信号实现多片DAC7731的同步转换输出。

D/A转换电路

  2.2 A/D转换电路

  综合考虑系统的分辨率、通道数、采样率、采样范围和接口等要求,系统的ADC 选用TI公司的14位8通道高性能逐次逼近型模数转换器TLC3574.该器件工作频率高达25 MHz,采用伪差分的模拟输入电路,将采样信号的动态范围扩展为±10 V,其内含的采样和保持功能使得外围电路大为简化。在输出接口上,该器件采用SPI/DSP兼容的串行接口方式,从而极大地减少了接口的连线数量。A/D 转换电路原理如图4 所示,由生成TLC3574的SPI接口和时序信号,控制其将外部的模拟信号转换后输入到,进行相应的计算和处理。由于TLC3574 片内没有电压基准,可选用TI 公司的三端可调分流基准源TL431组成外围电路为其提供一个高精度的4 V电压基准。

A/D转换电路

  考虑到信号的阻抗匹配需要,ADC 的输入前端需要有一个缓冲运放,其性能必须与ADC的性能相匹配,否则会影响和限制ADC的性能。在过程中如果信号的变化幅度比较大,则需要根据信号的变化相应调整放大器的增益。否则,单一的增益放大会使得放大后的信号幅值很有可能超过ADC的转换量程。这里所采集的信号其变化幅度不是很大,采用TI公司高转换率的输入端运算放大器TL084就可以满足系统的使用要求。

  2.3 数字量输入/输出设计

  直接将通用背板的FPGA端口引到前端接口板,根据测试对象的接口电路,如27 V/开、地/开等形式,选择继电器、OC门、等方式,实现数字量的输入和输出。

  2.4 串口电路设计

  由于FPGA板卡具有便利的输入输出控制功能,利用FPGA 板卡可以很方便的通过连接不同的接口芯片选择相应的串口模式。MAX490是低功耗收发器,用于RS 485 与RS 422通信。它具有一个驱动器和一个接收器,驱动器摆率不受限制,可以实现最高2.5 Mb/s的传输速率。驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。如图5所示,通过连接低功耗收发器MAX490可以实现RS 422通信,而改接SP3223芯片后就可以实现RS 232通信,区别只是在于FPGA中建立的UART逻辑模块有所不同,进一步显示了系统良好的通用性。

串口电路

光耦相关文章:光耦原理




评论


相关推荐

技术专区

关闭