新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于PIC单片机的音频信号分析仪的设计

基于PIC单片机的音频信号分析仪的设计

作者:时间:2011-10-25来源:网络收藏

  2.2 周期判定

  音频信号的频率分量不但多,而且不具周期性。测量周期可以在时域也可以在频域,但是由于频域测量周期性时要求某些频率点具有由规律的零点或接近零点出现,所以对于较为复杂的、频率分量较多且功率分布较均匀且低的信号就无法正确地分析其周期性。因此,对于信号的周期性判定,应该在对信号进行FFT变换之前,直接调用周期判断函数。周期性判定子程序流程图如图5所示。

基于PIC单片机的音频信号分析仪的设计

  2.3 FFT变换

  由于直接傅里叶变换的计算量与子样本点数N的平方成正比,在N较大时,计算量太大,不适合在资源有限的嵌入式系统中实现。所以最常用基2 FFT算法,其主要思想是将N点直接傅里叶变换分解成多个较短的直接傅里叶变换,再利用旋转因子的周期性、对称性,在很大程度上节省了系统资源。

  MPLAB C30 C编译器内部提供了几乎全部的数字信号处理软件工具,通过DSPIC30F系列微处理器,只需调用Microchip公司提供的库函数,即可方便的实现数字信号处理。对于基2 FFT变换来说,其软件流程图如图6所示。

基于PIC单片机的音频信号分析仪的设计

  2.4 特征值提取

  对频域分析起决定作用的量包括采样频率、采样点数。通过FFT变换,得到离散化的幅度谱X(k),先将离散化的幅度值平方,再除于子样本点数N,就可得到该频率点对应的功率值(功率=X(k)*X(k)/N)。

  3 结 语

  系统的主要性能指标为:输入阻抗50 Ω;输入信号电压范围(峰-峰值)100 mV~5 V;输入信号包含的频率成分范围为200 Hz~10 kHz;频率分辨力为100Hz(可正确测量被测信号中,频差不小于100 Hz的频率分量的功率值);输入信号的总功率和各频率分量的功率,检测出的各频率分量的功率之和不小于总功率值的95%;各频率分量功率测量的相对误差的绝对值小于10%,总功率测量的相对误差的绝对值小于5%;以5 s周期刷新分析数据,信号各频率分量应按功率大小依次存储并可回放显示,同时实时显示信号总功率和至少前两个频率分量的频率值和功率值,并设暂停键保持显示的数据。基于DSP单片机技术的音频信号分析具有性能稳定、电路简单、速度快、成本低、体积小的特点,适用于需要音频信号分析的嵌入式系统中,可以在更多领域进一步推广和应用,如环境监测、语音识别、智能系统的控制等。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭