新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > SD卡在单片机系统上的应用

SD卡在单片机系统上的应用

作者:时间:2011-12-02来源:网络收藏

在现在的日常生活与工作中使用非常广泛,时下已经成为最为通用的数据存储卡。在诸如MP3、数码相机等设备上也都采用作为其存储设备。之所以得到如此广泛的使用,是因为它价格低廉、存储容量大、使用方便、通用性与安全性强等优点。既然它有着这么多优点,那么如果将它加入到单片机应用开发系统中来,将使系统变得更加出色。这就要求对SD卡的硬件与读写时序进行研究。对于SD卡的硬件结构,在官方的文档上有很详细的介绍,如SD卡内的存储器结构、存储单元组织方式等内容。要实现对它的读写,最核心的是它的时序,笔者在经过了实际的测试后,使用51单片机成功实现了对SD卡的扇区读写,并对其读写速度进行了评估。下面先来讲解SD卡的读写时序。

(1) SD卡的引脚定义

SD卡引脚功能详述:

引脚

编号
SD模式
SPI模式
名称
类型
描述
名称
类型
描述
1
CD/DAT3
IO或PP
卡检测/

数据线3
#CS
I
片选
2
CMD
PP
命令/

回应
DI
I
数据输入
3
VSS1
S
电源地
VSS
S
电源地
4
VDD
S
电源
VDD
S
电源
5
CLK
I
时钟
SCLK
I
时钟
6
VSS2
S
电源地
VSS2
S
电源地
7
DAT0
IO或PP
数据线0
DO
O或PP
数据输出
8
DAT1
IO或PP
数据线1
RSV
9
DAT2
IO或PP
数据线2
RSV

注:S:电源供给 I:输入 O:采用推拉驱动的输出

PP:采用推拉驱动的输入输出

SD卡SPI模式下与单片机的连接图:

SD卡支持两种总线方式:SD方式与SPI方式。其中SD方式采用6线制,使用CLK、CMD、DAT0~DAT3进行数据通信。而SPI方式采用4线制,使用CS、CLK、DataIn、DataOut进行数据通信。SD方式时的数据传输速度与SPI方式要快,采用单片机对SD卡进行读写时一般都采用SPI模式。采用不同的初始化方式可以使SD卡工作于SD方式或SPI方式。这里只对其SPI方式进行介绍。

(2)SPI方式驱动SD卡的方法

SD卡的SPI通信接口使其可以通过SPI通道进行数据读写。从应用的角度来看,采用SPI接口的好处在于,很多单片机内部自带SPI控制器,不光给开发上带来方便,同时也见降低了开发成本。然而,它也有不好的地方,如失去了SD卡的性能优势,要解决这一问题,就要用SD方式,因为它提供更大的总线数据带宽。SPI接口的选用是在上电初始时向其写入第一个命令时进行的。以下介绍SD卡的驱动方法,只实现简单的扇区读写。

1) 命令与数据传输

1. 命令传输

每一个命令都有自己命令应答格式。在SPI模式中定义了三种应答格式,如下表所示:

字节
含义

1
7
开始位,始终为0
6
参数错误
5
地址错误
4
擦除序列错误
3
CRC错误
2
非法命令
1
擦除复位
0
闲置状态

字节
含义

1
7
开始位,始终为0
6
参数错误
5
地址错误
4
擦除序列错误
3
CRC错误
2
非法命令
1
擦除复位
0
闲置状态

2
7
溢出,CSD覆盖
6
擦除参数
5
写保护非法
4
卡ECC失败
3
卡控制器错误
2
未知错误
1
写保护擦除跳过,锁/解锁失败
0
锁卡

字节
含义

1
7
开始位,始终为0
6
参数错误
5
地址错误
4
擦除序列错误
3
CRC错误
2
非法命令
1
擦除复位
0
闲置状态
2~5
全部
操作条件寄存器,高位在前

写命令的例程:

C程序

//-------------------------------------------------------------------------

向SD卡中写入命令,并返回回应的第二个字节

//-------------------------------------------------------------------------

unsigned char Write_Command_SD(unsigned char *CMD)

{

unsigned char tmp;

unsigned char retry=0;

unsigned char i;

//禁止SD卡片选

SPI_CS=1;

//发送8个时钟信号

Write_Byte_SD(0xFF);

//使能SD卡片选

SPI_CS=0;

//向SD卡发送6字节命令

for (i=0;i0x06;i++)

{

Write_Byte_SD(*CMD++);

}

//获得16位的回应

Read_Byte_SD(); //read the first byte,ignore it.

do

{ //读取后8位

tmp = Read_Byte_SD();

retry++;

}

while((tmp==0xff)(retry100));

return(tmp);

}

2) 初始化

SD卡的初始化是非常重要的,只有进行了正确的初始化,才能进行后面的各项操作。在初始化过程中,SPI的时钟不能太快,否则会造初始化失败。在初始化成功后,应尽量提高SPI的速率。在刚开始要先发送至少74个时钟信号,这是必须的。在很多读者的实验中,很多是因为疏忽了这一点,而使初始化不成功。随后就是写入两个命令CMD0与CMD1,使SD卡进入SPI模式

初始化例程:

C程序

//----------------------------------------------------------

初始化SD卡到SPI模式

//----------------------------------------------------------

unsigned char SD_Init()

{

unsigned char retry,temp;

unsigned char i;

unsigned char CMD[] = {0x40,0x00,0x00,0x00,0x00,0x95};

SD_Port_Init(); //初始化驱动端口

Init_Flag=1; //将初始化标志置1

for (i=0;i0x0f;i++)

{

Write_Byte_SD(0xff); //发送至少74个时钟信号

}

//向SD卡发送CMD0

retry=0;

do

{ //为了能够成功写入CMD0,在这里写200次

temp=Write_Command_SD(CMD);

retry++;

if(retry==200)

{ //超过200次

return(INIT_CMD0_ERROR); //CMD0 Error!

}

}

while(temp!=1); //回应01h,停止写入

//发送CMD1到SD卡

CMD[0] = 0x41; //CMD1

CMD[5] = 0xFF;

retry=0;

do

{ //为了能成功写入CMD1,写100次

temp=Write_Command_SD(CMD);

retry++;

if(retry==100)

{ //超过100次

return(INIT_CMD1_ERROR); //CMD1 Error!

}

}

while(temp!=0); //回应00h停止写入

Init_Flag=0; //初始化完毕,初始化标志清零

SPI_CS=1; //片选无效

return(0); //初始化成功

}

3) 读取CID

CID寄存器存储了SD卡的标识码。每一个卡都有唯一的标识码。

CID寄存器长度为128位。它的寄存器结构如下:

名称
数据宽度
CID划分
生产标识号
MID
8
[127:120]
OEM/应用标识
OID
16
[119:104]
产品名称
PNM
40
[103:64]
产品版本
PRV
8
[63:56]
产品序列号
PSN
32
[55:24]
保留
4
[23:20]
生产日期
MDT
12
[19:8]
CRC7校验合
CRC
7
[7:1]
未使用,始终为1
1
[0:0]


上一页 1 2 下一页

关键词: SD卡 单片机系统

评论


相关推荐

技术专区

关闭