新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于单片机的数字电容表设计

基于单片机的数字电容表设计

作者:时间:2013-02-18来源:网络收藏


  4 电路工作原理

  该以电容器的充电规律作为测量依据,测试原理见图3。电源电压E+经电阻R给被测电容CX充电,CX两端原电压随充电时间的增加而上升。当充电时间t等于RC时间常数τ时,CX两端电压约为电源电压的63.2%,即0.632E+。就是以该电压作为测试基准电压,测量电容器充电达到该电压的时间,便能知道电容器的容量。例如,设电阻R的阻值为1 kΩ,CX两端电压上升到0.632E+所需的时间为1 ms,那么由公式τ=RC可知CX的容量为1微法。具体测量电路如图4所示。


  图4中,A为内部构造的电压比较器,的P1.0和P1.1口除了作为I/O口外,还有一个功能是作为电压比较器的输入端,P1.0为同相输入端,P1.1为反相输入端,电压比较器的比较结果存入P3.6口对应的寄存器。电压比较器的基准电压设定为0.632E+,在CX两端电压从0升到0.632E+的过程中,P3.6口输出为0,当电池电压CX两端电压一旦超过0.632E+时,P3.6口输出变为1。以P3.6口的输出电平为依据,用内部的定时器T0对充电时间进行计数,再将计数结果显示出来即得出测量结果。

  整机电路见图5。电路由电路、电容充电测量电路和数码显示电路等部分组成。


  AT89C2051内部的电压比较器和电阻R2~R7等组成测量电路。其中R2~R5为量程电阻,由波段开关S1选择使用,电压比较器的基准电压由5 V电源电压经R6,RP1,R7分压后得到,调节RP1可调整基准电压。当P1.2口在程序的控制下输出高电平时,电容Cx即开始充电。量程电阻R2~R5每档以10倍递减,故每档显示读数以10倍递增。由于内部P1.2口的上拉电阻经实测约为200 kΩ,其输出电平不能作为充电电压用,故用R5兼作其上拉电阻,由于其他三个充电电阻和R5是串联关系,因此R2,R3,R4应由标准值减去1 kΩ,分别为999 kΩ,99 kΩ,9 kΩ。由于999 kΩ和1 MΩ相对误差较小,所以R2还是取1 MΩ。

  数码管DS1~DS4、电阻R8~R14等组成数码显示电路。本机采用动态扫描显示的方式,用软件对字形码译码。P3.0~P3.5,P3.7口作数码显示七段笔划字形码的输出,P1.3~P1.6口作四个数码管的动态扫描位驱动码输出。在此采用了共阴数码管,由于AT89C2051的P1.3~P1.6口有25 mA的下拉电流能力,所以不用三极管就能驱动数码管。R8~R14为P3.0~P3.5,P3.7口的上拉电阻,用以驱动数码管的各字段,当P3的某一端口输出低电平时其对应的字段笔划不点亮,而当其输出高电平时,则对应的上拉电阻即能点亮相应的字段笔划。



评论


相关推荐

技术专区

关闭