新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于单片机的智能充电器设计

基于单片机的智能充电器设计

作者:时间:2013-09-30来源:网络收藏

图4所示是该充电器的主控电路。图4中的CCS,DCS,VS-BAT分别是用于采集电池充电电流,放电电流,充电电压的端口,它们经过滤波放大后和P87LPC767的AD转换脚相连接,并经过转换判断电池的充放电状态后,可对电池的充放电作出相应的控制,这些判断和控制都是由软件来完成的。主要是通过采集充电电路中的LED1~LED3等三个输出口的电平高低,并根据它们的高低电平状态组合控制电池的充电状态。SMBC和SMBD是P87LPC767和智能电池之间虚拟的异步串行通讯总线的时钟线和数据线,P87LPC767的内部定时器2可提供模拟异步串行通讯总线的控制时钟。E-CHG是充电控制使能端口,可在满足充电条件并设定充电方式后置其为高电平,以启动充电电路对电池的充电,反之,当出现过温、过电流、过电压、充电故障或充电满状态时,该端为低电平,以关断充电电路。E-DSG是放电使能控制端口,当检测到镍铬电池没有放电完毕时,P87LPC767就把E-DSG置为高电平,启动放电电路对镍铬电池进行放电,直到放电完毕,则把其置为低电平,关闭放电电路并对镍铬电池进行充电。SDA和SCL是P87LPC767的异步串行通讯总线的数据线和时钟线,它们和显示电路中的SDA和SCL相连接,以使P87LPC767作为从机和进行通讯,从而把电池的各种信息(结构参数和实时参数)传输到上,再由液晶显示器进行显示。两个跳线是P87LPC767作为从机和P87LPC764进行通讯时的地址选择信号,它们可连接或断开输入到端口的信号,它们的组合状态00,01,10,11分别代表从机的地址00,01,10,11,以便主机和从机通讯时发出地址信号,之后从机通过查询作出回应,并向主机发送信息。

1.3 的信息显示

以P87LPC764为核心构成的信息显示模块可通过I2C总线与4路充电管理部分的P87LPC767进行通讯(每个P87LPC764与4个P87LPC767接口,每一套电路负责一组电池的充电管理)。当系统采集到电池的实时参数和结构参数后,即可通过LCD进行中文模式的信息显示(要显示的汉字和字符字库存储在24C16中,P87LPC764通过I2C总线对其进行调用);同时利用P87LPC764的TXD、RXD口线提供给RS232接口,从而完成与PC管理计算机的相连,最终完成对电池的集散式管理。

2 的软件设计

图5是该智能管理系统的程序流程图。该系统除了完成充放电控制外,还提供过流保护、过压保护、过温保护、蜂鸣报警等功能。

程序开始执行后,首先进行初始化并检测电池电压、电流、温度等信息是否正常。如正常则进入下一步,否则报警并关闭电路。如果电池电压在充电终止电压和放电终止电压之间,说明电池既可充电也可放电。此时电路将判断接上充电机还是接上负载,以进行相应的充电和放电。如果两者都没有接,则循环检测过程。若电池电压已经到达充电终止电压,则等待负载的接入进行放电;同样若电池电压己经达到放电终止电压,则等待充电机的接入以进行充电。

在整个过程中,该电路将始终实时检测电池信息,若有异常情况发生,则立即利用中断信号终止正在进行的充电或者放电过程,关断充放电回路,同时进行报警并提示报警原因。

3 结束语

该智能电池充电器能有效地解决电池和充电器的兼容问题,从而避免了因电池化学特性不同而给电池充电造成的各种麻烦。另外,除了对电池电压的检测外,为了更好的保护电池,该充电器充电时还可对电池的温度及充电时间进行监测以作为辅助或后备保护方案。


参考文献:

[1].bq2054datasheethttp://www.dzsc.com/datasheet/bq2054_177952.html.
[2].MAX5434datasheethttp://www.dzsc.com/datasheet/MAX5434_1107335.html.
[3].P87LPC767datasheethttp://www.dzsc.com/datasheet/P87LPC767_html.
[4].24C16datasheethttp://www.dzsc.com/datasheet/24C16_32286.html.
[5].RS232datasheethttp://www.dzsc.com/datasheet/RS232_585128.html.


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭