新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 燃料电池汽车的动力传动系统设计

燃料电池汽车的动力传动系统设计

作者:时间:2011-12-24来源:网络收藏
IGHT: 0px; PADDING-LEFT: 0px; PADDING-BOTTOM: 0px; MARGIN: 20px 0px 0px; COLOR: rgb(0,0,0); PADDING-TOP: 0px; TEXT-ALIGN: center">燃料电池汽车的动力传动系统设计

  3 多能源系统管理与优化

  电池不适合作为动力系统的单一驱动能源,必须选用辅助能源系统合理补充驱动电动汽车所需的能量,覆盖功率波动,提高峰值功率,吸收回馈能量,改善电池输出功率的瞬态特性。目前各大汽车开发商采用了辅助动力,来提高燃料的性能(表1所示)。

  3.1 动力电池辅助能源系统

  目前铅酸电池由于比能量及比功率均较低,已经淘汰。在汽车上常用的动力蓄电池主要有镍氢电池和锂离子电池等。

表1 典型的燃料

燃料电池汽车的动力传动系统设计

  镍氢电池属于碱性电池,具有不易老化,无需预充电以及低温放电特性较好等优点。其能量密度可超过80 Wh/kg,一次充电的行驶距离长,在大电流工作时能够平稳放电。FCHV-4,High-lander FCHV-adv和通用Chevrolet Equinox的动力系统都是燃料电池和镍氢电池集成的。但,镍氢在高温环境下,电池电荷量会急剧下降,并且具有记忆效应和充电发热等方面的问题。在燃料电池混合动力系统中镍氢电池SOC应保持在40%-60%之间,充放电电流应处于160-240 A的范围,温度应维持在常温附近,以确保系统安全性和经济性。

  锂离子电池具有体积小,能量密度高(>120Wh/kg)、高安全性和无污染性等优点。本田FCXClarity,通用Chevrolet Sequel锂和日产X-Trail FCV等都采用锂离子电池作为燃料电池汽车的辅助能源系统。离子电池的能量密度是镍氢电池的1.5-3倍。其单体电池的平均电压为3.2V,相当于3个镍锌或镍氢电池串接起来的电压值,因而能够减少电池组合体的数量,降低单体电池电压差所造成的电池故障发生概率,从而提高了电池组的使用寿命。

  锂离子电池具备自放电低(仅为5%-10%)的优点,当在非使用状态下贮存,内部相当稳定,几乎不发生任何化学反应。由于锂离子电池不含有镉、汞和铅等重金属,因而在使用过程中不会对环境造成污染。对于电动汽车而言,锂离子电池易于车载布置安装,是较为理想的能量存储媒介。常常使用Simulink和Dymola等工具来对电池系统进行仿真分析,提高电池的使用效率和寿命。

  其充电放电动态过程可以用Thevenin模型来如下:

燃料电池汽车的动力传动系统设计

3.2 超级电容系统

  超级电容器是一种新型储能元件,它既像静电电容一样具有很高的放电功率,又像电池一样具有很大的电荷储存能力。由于其放电特性与静电电容更为接近,所以仍然称之为“电容”。

  如果仅采用超级电容作为唯一辅助能源还存在诸多不足之处,如:电动汽车长时间停机后再次启动,由于超级电容的自放电效应,在燃料电池的能量输出尚未稳定时车载辅助系统的供电将无法保障。况且超级电容能量密度很低,若要达到一定的能量储备能力其设备体积势必加大。当前超级电容都是与其他动力电池一起购车辅助电源系统,在燃料电池汽车上使用的。为了克服精确的描述超级电容的特性,可以采用阻抗法进行建模代替简单RC回路模型。超级电容当前SOC主要基于超级电容的输出电压:

燃料电池汽车的动力传动系统设计

  3.3 多源能量的组合与控制

  燃料电池电动汽车安装上述两种拓扑构型,与动力电池和超级电容进行组合,才能达到比较好的效果。目前,主要采用的三种能量组合方式有:1)燃料电池+动力电池,通用Chevrolet Equinox等就采用这种组合方式;2)燃料电池+超级电容,如本田的FCV-3和马自达FC-EV等;3)燃料电池+动力电池+超级电容,如本田FCHV-4。Tadaichi研究了不同状况下,能量的流动方式。通过对车用3种能源的比较,基于燃料电池发动机输出功率预测控制策略设计了多能源能量管理系统,实现了对3种能源的优化管理和控制。

  4 动力系统配置与仿真优化技术

  4.1 燃料电池系统仿真技术

  对燃料电池汽车中的燃料电池系统建模的方法又可分为两种,一种是在电化学、工程热力学、流体力学等理论基础上,建立比较复杂的一维或多维物理模型。这种模型可根据不同燃料电池的结构参数建立相应模型,分析压力、温度、湿度、流量、催化剂、管道结构等多方面因素对燃料电池工作的影响。但这种模型复杂不直观,且运算速度慢。另一种则采用较简单的数学经验模型并结合相应的商业软件,这种方法具有直观快速的特点,但该模型只能针对特定的燃料电池系统,其建立需依靠实验数据。


  4.2 整车系统仿真优化技术

  燃料电池车仿真的最终目的是以燃料电池模型为基础,结合子系统和动力传送系统的相关模型,仿真分析燃料电池系统乃至整个汽车动力系统的工作情况。这种系统优化的方法主要是结合实际的使用来进行的,一般分成两种。

  在实际使用路况未知的情况,俄亥俄州立大学的T. Gabriel Choi等基于FIAT Panda车型,针对燃料电池插电式电动汽车的动力要求,研究了两者控制测量:离线全局优化和动态优化

超级电容器相关文章:超级电容器原理




评论


相关推荐

技术专区

关闭