新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 节能式电源拓扑详解

节能式电源拓扑详解

作者:时间:2012-07-16来源:网络收藏
一个耦合电容来消除其中的DC分量,而该电容还作为额外的能量存储单元。当两个MOSFET都被关断时,变压器的漏电感中的能量促使半桥的电压极性反转。这种电压摆幅最终被突然出现初级电流的相关MOSFET体二极管钳制。

选择标准

  这些能源优化方面的成果带来了出色的效率。对于75W/24V的电源,准谐振转换器设计可以获得超过88%的 效率。利用同步整流 (加上额外的模拟控制器和一个PFC前端),更有可能在90W/19V电源下把效率提高到90% 以上。在该功率级,虽然LLC谐振和非对称半桥转换器可获得更高的效率,但由于这两种方案的实现成本较高,所以这个功率范围普遍采用准谐振转换器。对于从1W辅助电源到30W机顶盒电源乃至50W的工业电源的应用范围,e-Series集成式电源开关系列都十分有效。在此功率级之上,建议使用带外部MOSFET的FAN6300准谐振控制器,它可以提供处理超高系统输入电压的额外灵活性,此外,由于外部MOSFET的选择范围广泛而有助于优化性价比。

  准谐振反激式拓扑使用一个低端MOSFET;而另外两种拓扑在一个半桥结构中需要两个MOSFET。因此,在功率级较低时,准谐振反激式是最具成本优势的拓扑。在功率级较高时,变压器的尺寸增加,效率和功率密度下降,这时往往考虑采用两种零电压开关拓扑。

  系统设计会受到四个因素所影响:分别是输入电压范围、输出电压、是否易于实现同步整流,以及漏电感的实现。

  图2比较了两种拓扑的增益曲线。为便于说明,我们假设需要支持的输入电压为110V 和 220V。对于非对称半桥拓扑,这不是问题。在我们设定的工作条件下,220V 和110V 时其增益分别为0.2和0.4 。在220V时,效率较低,因为磁化DC电流随占空比减小而增大。对于LLC谐振转换器来说,最大增益为1.2,要注意的是满负载曲线非常接近谐振。0.6的增益将导致频率极高,系统性能很差。总言之,LLC 转换器不适合于较宽的工作范围。通过对漏电感进行外部调节,LLC 转换器可以用于欧洲的输入范围,但代价是磁化电流较大;若采用了PFC前端,它的工作最佳。而非对称半桥结构在输入端带有PFC级,因此电路可工作在很宽的输入电压范围上。

  节能式电源拓扑详解

  图2:非对称半桥和LLC转换器的增益曲线

  对于24V以上的输出电压,我们建议采用LLC谐振转换器。高的输出二极管电压会致使非对称半桥转换器效率降低,因为额定电压较高的二极管,其正向压降也较高。在24V以下,非对称半桥转换器则是很好的选择。因为这时LLC转换器的输出电容纹波电流要大得多,其随输出电压降低而变大,从而增加解决方案的成本和尺寸。

  上述两种拓扑都可以采用同步整流。对非对称半桥拓扑,这实现起来非常简单 (参见飞兆半导体应用说明AN-4153)。对LLC控制器,需要一个特殊的模拟电路来检测流入MOSFET的电流,如果开关频率被限制为第二个谐振频率 (图2中的100kHz),该技术是比较简单的。

  最后,两种设计都依赖变压器的漏电感:在LLC转换器中用来控制增益曲线 (图2);而在非对称半桥转换器则用以确保轻载下的软开关。对于大多数应用,我们都建议采用两个单独的电感来达到此目的。漏电感是变压器中不容易控制的一个参数。此外,要实现一个不同寻常的漏电感,需要一个非标准的线圈管,这增加了成本。对于非对称半桥结构,如果采用标准变压器,谐振开关速度至少是开关频率的10倍,从而产生更大的损耗。总之,对LLC转换器而言,建议再采用一个普通铁氧体电感;而对非对称半桥转换器,建议只使用一个高频铁氧体电感。

  图3显示了非对称半桥转换器的电路示意图。该图非常类似于LLC谐振转换器,只有一点不同:LLC谐振转换器不需要输出电感,以及非对称半桥控制器需要设置频率而非PWM控制。

  节能式电源拓扑详解

  图3:基于FSFA2100的非对称半桥转换



关键词: 节能式 电源拓扑

评论


技术专区

关闭