新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 亚微米CMOS电路中VDD-VSSESD保护结构设计二

亚微米CMOS电路中VDD-VSSESD保护结构设计二

作者:时间:2012-10-11来源:网络收藏
ACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">  3.2 具体设计及结果

  上述例子中,主要是版图的设计不当造成在ESD发生时自身结构的损坏。经过分析,对该版图结构做了一些修改优化。

  原因:针对上述理论分析及例子中实际的击穿点,该结构在1000V即被击穿的原因主要是N1管的漏区孔距栅的距离d太小所致,d=1.35μm;

  目标:改动尽量少的版次达到全面提升该电路的ESD性能的目标;

  方案:N1管的L修改为1.2μm,d修改为3μm,改动的版次为多晶版和孔版;

  结果:I/O-、I/O/-VSS、I/O-I/O模式下,最低的P95可达到2.50kV,P50、P51、P54、P57、P84可达2.8kV,其余的I/O在3.1kV时仍然通过;在-VSS模式下,当ESD加+3.40kV时,-VSS间短路,所以该模式下抗ESD电压为3.1kV。

  可见,通过修改优化VDD-VSS钳位结构,其图2结构自身的抗ESD健壮性大大增强,VDD-VSS的抗ESD能力提高到3kV以上,其余I/O也得到了进一步的提升,使该电路总体ESD性能提高到2.20kV以上,满足了民品电路的ESD性能要求。要进一步提高该电路的ESD性能,需要对该结构继续优化,如再增大N1管的漏区孔距栅的距离d及W/L等,其他I/O口的GGNMOS管也需要相应的优化修改,但其总面积可能会相应增加。

  4 VDD-VSS两种电压钳位结构的比较

  图8为一种常见的全芯片ESD保护结构的设计,左边为一个输入PAD,右边为一个输出PAD,最右边的NMOS管则是常规工艺电路中最常见的VDD-VSS电压钳位结构的设计。其设计要注意管子本身尺寸的逻辑设计,也要注意其版图的详细规则设计。它不属于电压检测电路。在电路正常工作时,相当于一个反向二极管;当有ESD发生时,则NMOS管漏区的PN结反向击穿,寄生的NPN导通从而泄放大电流并使VDD-VSS间的电压钳位。

  图9中最右边的VDD-VSS电压钳位结构的设计则为一种ESD瞬态检测电路,该电路一种详细的设计方案即为图2的结构设计。具体作用上面已经进行了详细的分析阐述。主要是比较一下图8、图9两种VDD-VSS电压钳位结构的优劣。

  

亚微米CMOS电路中VDD-VSSESD保护结构设计二

  

亚微米CMOS电路中VDD-VSSESD保护结构设计二

  在ESD发生时,两个结构对VDD-VSS都有电压钳位作用,关键是各自电流的泄放能力的差异。一般管子的正向导通比反向击穿能力耐更高的ESD电压,承受更大、更低阻抗的ESD电流,且ESD电流泄放更均匀。在亚微米 IC中,VDD-VSS直接的GGNMOS大管可能不足以耐较高的ESD电压,该结构更有利于ESD性能的提升,同时其版图设计面积也更大。只有在亚微米以下的电路的设计中,才需要考虑。


上一页 1 2 下一页

关键词: CMOS VDD VSSESD

评论


相关推荐

技术专区

关闭