新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 深度分析白光LED的散热技术(一)

深度分析白光LED的散热技术(一)

作者:时间:2013-05-12来源:网络收藏
前言

  可以分成组件固定在两条平行导线上,包覆树脂密封成炮弹型,以及组件直接固定在印刷导线基板上,再用树脂密封成表面封装型两种。

  炮弹型的树脂密封不具备镜片功能,比较容易控制集光与集束;表面封装型直接将组件固定在基板上,适合高密度封装,虽然小型、轻量、薄型化比较有利,不过辉度却比炮弹型低,必需使用反射器才能达成高辉度化要求;表面封装型主要应用在照明与液晶显示器的背光模块等领域。

  本文要以表面封装型LED为焦点,介绍表面封装用基板要求的特性、功能,以及设计上的经常面临的问题,同时探讨O2PERA(Optimized OutPut by Efficient Reflection Angle)的光学设计技巧。

  封装基板的功能

  表面封装型的LED芯片通常只有米粒左右大小,基本结构如图1所示,它是将发光组件封装在印刷基板的电极上,再包覆树脂密封。

  LED芯片

  制造LED芯片时印刷基板的功能之一,是将半导体device组件化,另外一个功能是让组件产生的放射光高效率在前面反射,藉此提高LED的效率。

  为提高LED组件的发光效率,基板侧放射的光线高效率反射也非常重要,所以要求高反射率的基板。印刷基板镀金或是镀银可以提高反射率,不过镀金时类似蓝光领域低波长光的反射率很低,镀银时有长期耐久性偏低的问题,因此研究人员检讨使用LED用白色基板。

  LED用白色基板要求400~ 750nm,可视光全波长领域具备均匀高反射率,反射率的波长相关性很强时,LED芯片设计上会变成与设计波长相异的光源,因此要求在可视光全波长领域具备均匀的反射率。

白色基板的性能与特性

  性能要求

  表1是LED的发光机制一览,它可以分成4大类。如表所示成为LED的原光波长,全部偏向蓝光与近紫外低波长侧。一般类似环氧树脂基板的有机材料,紫外线等高能量光是最大敌人,光劣化极易造成环氧树脂变色,树脂的劣化使得可视光波长领域的反射率降低,外观上形成略带黄色,严重时甚至会变成茶色~灰色色调。

  白光LED发光机制

  基板变色除了高能量光之外,热也是促进变色的原因之一,热会促进类似光劣化时的茶色系色调变色。此外在LED制程上银胶以及金-锡接合时,基板会被加热到150~320℃,接着还需面临260℃的reflow高热。虽然芯片状LED一直到装设在电子机器为止的热履历只有数秒~30秒,不过它必需在200℃左右的环境进出3~5次,基板受到该热履历影响加速变色,因此基板的热耐变色性非常重要,尤其是近年高辉度LED组件的发热非常大,动作时芯片温度经常超过100℃,造成基板曝露在100℃高温紫外光与蓝光环境下。

  基板一旦变色,LED的辉度降低,从基板反射的反射光出现色调变化,其结果导致制品寿命变短,因此LED用白色基板要求高反射率与低蓝光/紫外光树脂劣化特性,即使受热也不会变色等特性。

  基板的机械特性要求

  基板的机械特性与LED的寿命无直接关系,而是涉及基板厚度精度与钻孔等加工性等技术性课题。例如加工基板sheet(大约100×150mm)表面同时进行数百个以上封装、树脂密封等工程时,基板sheet加工分别利用钻头钻床、铣床(Router)、模具冲拔加工,钻头加工与铣床加工时,钻头(Bit)的寿命与加工端面的毛边会成为问题,钻头的磨耗则与基板制作成本有直接关连,因此要求低钻头磨耗性的基板。此外,加工时发生的毛边会影响制品的良率,成为成本上升的主要原因,因此要求不会发生毛边,加工时能够抑制成本的基板材料。

  组件的树脂密封使用注型与转写成型技术,基板的厚度精度太差时,树脂密封工程时模具与基板之间会出现间隙,进而导致密封树脂泄漏等问题,直接影响制品的良率,其结果反映在成本,因此板厚精度成为重要的特性之一。
提高耐候性、耐变色、反射率的技术  

  类似陶瓷等无机材料,不会因为加热与光线造成劣化、变色,它是非常优秀的材料,不过综合考虑基板、密封树脂、成本等问题时,环氧树脂至今还是成为广泛被采用封装材料,特别是环氧树脂硬化时不会产生副生成物,硬化后具备优秀的电气、力学、耐热性等许多特征。此外主剂与硬化剂可以依照预期的特性设计作任意组合。
  印刷导线基板材料亦即贴铜积层板,它是混合“Bisphenol A的Glycidyl ether型”、“Novolac的Glycidyl ether型”环氧树脂等主剂,再与“Dicyandiamide”、“Novolac”等硬化剂混合,经过含浸Glass cross制程后干燥,再与铜箔组合积层、加压、加热,制成所谓的“贴铜积层板”。图2是一般环氧树脂的化学结构;图3是积层板的制造流程。
深度分析白光LED的散热技术(一)
深度分析白光LED的散热技术(一)
  如众所周知环氧树脂不适合当作LED的基板材料,主要原因是环氧树脂拥有容易吸收紫外线的Allele结构(2),Allele结构一旦受热会劣化、着色,没有Allele结构的环氧树脂种类繁多,脂环式环氧树脂是典型代表。
  图4是脂环式环氧树脂的化学结构,目前脂环式环氧树脂已经成为高辉度用LED密封材料,脂环式环氧树脂具备高耐旋光性,反面缺点是耐热性较低,脂环式环氧树脂若应用在积层板时,可以形成高耐紫外线材料,不过受限于低反应性与黏度等问题,制造上还有许多技术性课题有待解决。
深度分析白光LED的散热技术(一)
改善加热变色性的方法,分别如下:
  (1)提高树脂的耐热性(提高玻璃转移点的温度)。
  (2)添加防氧化剂。
  (3)主剂的双重结合,降低容易氧化的部位。
  有关第(1)项,一般认为可以透过环氧树脂与硬化剂的组合,可望获得改善。
  有关第(2)项,研究人员开始检讨防氧化剂的添加量与相性。
  有关第(3)项,采用脂环式环氧树脂,可以解决特性面的问题。
  提高白色度与反射率
  为了使基板白色化,必需将白色颜料添加于树脂内,该白色颜料的选择会直接反映在基板的反射率,因此它是非常重的项目。适合LED基板的白色颜料必需选用「在可视光领域的反射率很高,即使低波长它的反射率也不会降低的材料」,二氧化钛比较接近上述要求,其它候补材料则有氧化锌、铝等等。基板若添加二氧化钛,可以提高初期白色度与反射率,缺点是热与紫外线会使有机部份迅速变色。此外若添加填充材料,基板的刚性会提高、热变形温度也随着变高,它可以提升芯片封装时的导线固定性与加工时的良率。
  白色积层板材料
  图5是日本业者开发的粘贴铜箔白色积层板“CS-3965H”的分光反射率。如图所示CS-3965H的分 光反射率,从近紫外(波长420nm)开始站立,在可视光全波长领域达到87%。如果基板变色时,在蓝光领域(波长450nm)的反射率会降低。
深度分析白光LED的散热技术(一)
  图6是“CS-3965H”经过加热与紫外线照射后的蓝光反射率变化特性,如图所示CS-3965H铜箔白色积层板的变色非常低,由于CS-3965H的初期反射率很高,热与紫外线照射后的反射率变化却非常低,非常适用于高辉度LED的封装。
<a class=深度分析LED的(一)" src="
上一页 1 2 下一页

评论


相关推荐

技术专区

关闭