新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 应对八天线LTE测试的挑战(一)

应对八天线LTE测试的挑战(一)

作者:时间:2013-09-30来源:网络收藏

目前,TD-LTE、FDD-LTE和LTE-Advanced(LTE-A)无线技术使用了几种不同的多种输入多路输出(MIMO)技术。鉴于MIMO系统的复杂性正在日益提高,因此相关的测试方法也将更具挑战性。例如,当前已部署的MIMO技术利用两具天线来改善信道性能。还有一些LTE社区已率先开始采用技术来实现更高的性能。这些先进的技术将使测试方法的选择变得更为至关重要。

  要想找到正确的方法,必须要充分理解每一版本的LTE所使用的天线技术。例如,波束是TD-LTE的一项关键特性。尽管它在某些场景下是一种极具吸引力的传输方案(例如开放的乡村地区或热点覆盖区),但它并不总是最佳的方法。波束赋型可以提高蜂窝中接收信号的信噪比(SNR),从而扩大覆盖范围或改善蜂窝边缘区域的用户体验。它还可以从空间上对信号的范围加以限制,从而将干扰降至最低。在信噪比充足的地区,波束赋型并不能使数据速率得到提高。

  通过在空间上复用并发数据流,MIMO可以在低关联、高信噪比信道条件下提高数据吞吐量。为了优化MIMO数据速率,TD-LTE使用包含八具天线的组件。在图1中,有四具天线(以蓝色显示)在物理上形成了角度相同的极化,而另外四具天线(以绿色显示)则与前面的四具天线形成了物理正交的关系。

应对八天线LTE测试的挑战(一)
图1:一个TD-LTE eNodeB天线配置,可以用于优化MIMO数据速率

  通过形成一个指向具体用户设备(UE)的波束,这两组四天线组件可以增强信噪比。两个正交极化的波束能够有效地模仿出两个存在较低关联天线,即使实际的空间关联较高也没问题。因此,这种天线配置能够扩大覆盖范围,使更广泛的高数据速率传输成为可能(图2)。

图2:一个形成正交极化波束的8×2波束赋型系统
图2:一个形成正交极化波束的8×2波束赋型系统

  除TD-LTE外,技术还可用于FDD-LTE。网络运营商可以利用该天线配置来增强上行链路的接收效果,解决低功率用户设备链路预算限制的问题。3GPP的RAN1工作组正在积极讨论技术在LTE-A的实用化部署。

在传统的性能测试中,天线模式,即一个天线阵列在每个方向上的信号增益,通常都会被忽视。这部分是因为,在传统的单路输入单路输出(SISO)系统进行的测试中,人们往往会假设天线都是全向的。但对于多数基站来说,事实并非如此。信号强度的方向性在MIMO空间信道中发挥着重要的作用,而在波束赋型应用中的作用则更为关键。因此,在测试八天线系统时,认真考虑天线的模式将是至关重要的。

  为了发挥八天线阵列的全部优势,LTE和LTE-A系统会使用双层波束赋型,以及干扰抑制和合并(IRC)等接收机技术。使用IRC技术时,eNodeB基础接收机站(BTS)使用从多种用户设备收集到信息(通常是各噪音源之间的交叉共变),从而以智能化的方式对噪音加以抑制。这类方案会增加MIMO信道仿真的复杂性。此外,它们还会带来如下的测试挑战:

  信道的数量:要想对一个波束赋型系统进行测试,就必须建立起MIMO信道。在TD-LTE中,上行和下行链路在特性上是相同的。在FD-LTE中,信道的关联程度可能较高或较低 – 这要依频率间隔或所观察到的(Rayleigh衰减、阴影衰减等)衰减水平等因素的而定。在实验室中为测试用途而创建的任何RF信道必须将这些细节考虑在内。

  对于八天线系统来说,此类测试很明显将涉及大量的RF信道。例如,一个8x2双向MIMO信道就需要16个RF信道。在许多实验室中,空间RF都是一个重要的因素。因此,提供这一能力可以大幅度增强能力,同时又不会导致测试平台的规模出现不成比例的异常增长。

  此外,要想实现信道互易性,就要求对8x2双向MIMO测试系统进行相位校准,只有校准后才能对系统的波束赋型能力进行测试。有效的相位调整和信道校准都是实现可靠和高效测试的关键因素。信道数量的这种增加还要求更RF硬件更密集地集成到系统中。如果不能有效集成,在有大量外侧分离器、合并器和循环器等设备的条件下,精确和可靠地实现RF信道几乎会成为一项不可能完成的任务。

  先进的信道建模:由于


上一页 1 2 下一页

关键词: 八天线 LTE测试

评论


相关推荐

技术专区

关闭