新闻中心

EEPW首页 > 模拟技术 > 设计应用 > MEMS加速计的三种高压灭菌器失效机理

MEMS加速计的三种高压灭菌器失效机理

作者:时间:2013-11-19来源:网络收藏
-TRANSFORM: none; TEXT-INDENT: 0px; MARGIN: 0px 0px 20px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT: 14px/25px 宋体, arial; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">

图3 . EMC 吸湿膨胀的FEA模拟


图4. 剥层分析,消除封装应力作为失效根源

III. 漏电影响

环氧材料的介电性能也可以通过水分摄取来改变。如图4所示,摄取水分之后,环氧/玻璃/云母复合材料的体积电阻率减少10倍以上(高达1%)。此外,尽管高压灭菌器试验箱中使用了去离子水,高压灭菌器大气的水凝结可以把封装材料内的离子污染聚集在一起,形成不同潜力的传感器之间的漏电通道。

传感器的加工步骤也有助于形成潜在的漏电通道。一方面,牺牲性氧化蚀刻步骤中使用的氢氟酸可能留下氟离子。而且,密封材料(玻璃熔块)中富含氧化铅,特定条件下可以沉淀成导电铅结。图5中的SEM图显示了玻璃熔块键合区出现的结节或团块非常明显(但Auger 分析不能区别它们是铅还是氧化铅)。

图 5. 玻璃熔块区的SEM图


图6 调制器扫频测量结果

应该指出的是,如果“火”线和地线之间存在电阻漏电,则会出现偏移变化。∑△ 调制器前端对保存在差分电容器中的电荷(即传感单元)进行采样。理想情况是,当传感单元带有Vref电荷时,电荷传送到集成电容器,不会随着时间推移而改变。但是如果充电电极(或火线)与地线之间存在漏电通道,就不会将所有电荷传送到集成电容器,电荷可能漏电到地线,导致集成的值较小,当差分电容器具有不同程度的漏电时,会出现净偏移变化。

很难直接测量漏电(大于1Gohm)。用曲线跟踪测量高压灭菌器测试前后引脚之间的I-V,不显示引脚之间有明显的电阻变化。于是采用间接漏电测量方法。这种方法主要测量调制器的扫频。调制器时钟频率为8-1MHz不等,在每个时钟频率点取偏移值。图6显示了扫频测量的结果。测量发现,失效器件(器件1718和器件1079)的偏移随着调制器时钟频率而不同,但正常器件(器件533和1121)则保持大致相同的偏移。这种现象的原因是固定直流电漏电,较长集成时间(较低时钟频率)会导致集成的电荷值较小。

扫频结果似乎说明偏移失效与漏电有关,因为要集成的电荷量随着集成时间而变化。问题是,漏电发生位置在哪里?为了找出漏电位置,执行了FA操作,通过激光蚀刻和化学蚀刻,选择性地去除某些区域的EMC材料。将EMC材料从传感单元键合“存放”区域去除(图7)发现,漏电行为(偏移与调制器时钟频率有关)消失。这证明焊盘存放区域内存在漏电通道。由此断定,高压灭菌器大气的水凝结聚集了离子,从而促进了漏电。多晶硅转子或传感单元导电帽之间可能有漏电。


图7 查出泄露位置的剥层分析

为了消除直流电漏电,因此从设计上建议在多晶硅转子上覆盖氮化硅钝化层,作为修复方法。 钝化层设计的生产和高压灭菌测试作为下一步实施。

IV. 寄生电容



关键词: MEMS 加速计

评论


相关推荐

技术专区

关闭