新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 热电偶电路的应用

热电偶电路的应用

作者:时间:2013-11-25来源:网络收藏
FORM: none; TEXT-INDENT: 0px; MARGIN: 0px 0px 20px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; FONT: 14px/25px 宋体, arial; WHITE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">应用

下面讨论了三种利用硅传感器IC进行冷结点补偿的典型应用,三个均用来解决温度范围较窄(0℃至+70℃和-40℃至+85℃)的冷结点温度补偿,精度在几个摄氏度以内。第一个在邻近冷节点的地方采用了一个温度感应IC来确定其温度;第二个电路包含一个远结点二极管温度检测器,由连接成二极管的晶体管(直接连接到的连接头)为其提供测试信号;第三个电路中的模/数转换器(ADC)内置冷结点补偿。所有三个电路均采用K型(由镍铬合金和镍基合金组成)进行温度测量。

1. 典型应用一

图2所示电路中,16位ADC将低电平热电偶电压转换成16位串行数据输出。集成可编程增益放大器有助于改善A/D转换的分辨率,这对于处理热电偶小信号输出非常必要。温度检测IC靠近热电偶接头安装,用于测量冷结点附近的温度。这种方法假设IC温度近似等于冷结点温度。冷结点温度传感器输出由ADC的通道2进行数字转换。温度传感器内部的2.56V基准节省了一个外部电压基准IC。

工作在双极性模式时,ADC可以转换热电偶的正信号和负信号,并在通道1输出。ADC的通道2将MAX6610的单结点输出电压转换成数字信号,提供给微控制器。温度检测IC的输出电压与冷结点温度成正比。为了确定热结点温度,需首先确定冷结点温度,然后通过NBS提供的K型热电偶查找表将冷结点温度转换成对应的热电电压(thermoelectric voltage)。将此电压与经过PGA增益校准的热电偶读数相加,最后再通过查找表将求和结果转换成温度,所得结果即为热结点温度。

表2列出了温度测量结果,冷结点温度变化范围:-40℃至+85℃,热结点保持在+100℃。实际测量结果的精度在很大程度上取决于本地温度检测IC的精度和烤箱温度。

2. 典型应用二

图3所示电路中,远结点温度检测IC测量电路的冷结点温度,与本地温度检测IC不同的是IC不需要靠近冷结点安装,而是通过外部连接成二极管的晶体管测量冷结点温度。晶体管直接安装在热电偶接头处。温度检测IC将晶体管的测量温度转换成数字输出。ADC的通道1将热电偶电压转换成数字输出,通道2没有使用,输入直接接地。外部2.5V基准IC为ADC提供基准电压。

表2、3列出了温度测量结果,冷结点温度变化范围:-40℃至+85℃,热结点保持在+100℃。实际测量结果精度在很大程度上取决于远结点二极管温度检测IC的精度和烤箱温度。

3. 典型应用三

图4电路中的12位ADC带有温度检测二极管,温度检测二极管将环境温度转换成电压量,IC通过处理热电偶电压和二极管的检测电压,计算出补偿后的热结点温度。数字输出是对热电偶测试温度进行补偿后的结果,在0℃至+700℃温度范围内,器件温度误差保持在±9LSB以内。虽然该器件的测温范围较宽,但它不能测量0℃以下的温度。

表4是图4所示电路的测量结果,冷结点温度变化范围:0℃至+70℃,热结点温度保持在+100℃。

DIY机械键盘相关社区:机械键盘DIY


光耦相关文章:光耦原理


电路相关文章:电路分析基础


热电偶相关文章:热电偶原理

上一页 1 2 3 4 5 下一页

关键词: 热电偶 电路

评论


相关推荐

技术专区

关闭