新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 采用线阵CCD的便携式光谱采集系统设计

采用线阵CCD的便携式光谱采集系统设计

作者:时间:2013-11-29来源:网络收藏

2.2 光谱数据处理电路及液晶显示动态曲线研究

  本文采用的微处理器是STC公司的STC89C52RC,其带有额外的P4口,使得IO口资源更加丰富,由于这款单片机的内核是基于C51的,因此其机器周期还是传统的12T模式,但是STC可以通过下载程序的模式设置来使用6T模式工作,即超频工作。本系统微处理器的时钟为24 MHz,使用6T模式工作:6个时钟周期为一个机器周期,指令周期为0.25 ns。由于其内部存储资源的限制:内存为512个字节,ROM空间为8 K。如果直接对ADS830转换后的数字信号进行处理,会导致数据的丢失,并且转换后的光谱数据的速率达到了1 MHz(周期1 ns)。基于以上两点,需要使用缓冲装置来暂存数据,以便单片机有效的对光谱数据进行处理。

  文中采用了具有先进先出特性的异步FIFO芯片IDT7205,其内部有8 K字节的存储空间,可以有效地对光谱数据进行缓冲。RS为其复位脉冲,低电平有效,一个有效的复位需要W和R处于高电平才能完成,只有在RS有效低电平过后,W和R才能进行操作。复位后的IDT7205读写指针

  地址相等且位于0位置。EF和FF为指示标志位,其中EF为内部空标志位,其有效的低电平说明此时IDT7205里数据已经读取完,等待写入数据,而FF则表示内部数据空间已经写满,需要尽快读出里面的数据。IDT7205复位后,这两者都处于低电平,因此在编程的时需要进行区分。

  采用线阵CCD的便携式光谱采集系统设计

  图5为IDT7205的硬件连接图,其中D1~D8为ADS830转换后的数字光谱信号,Q1~Q3则与STC89C52RS连接,这样单片机就有比较充足的时间和空间来处理光谱信号,并对处理后的信号进行显示。

  文中设计的系统可以使用电脑端和LCD端两种方式来实现光谱数据的显示,描绘其吸光度曲线,并得出吸收峰峰值和对应于该峰峰值的波长。电脑端的显示比较简单,通过PC机较强的数据处理能力能较好较快地显示吸光度曲线,而对于LCD19264来说,则有比较多的细节需要处理。文中采用的是带背光的LCD19264液晶来进行吸光度曲线的显示,该液晶只有192*64的分辨率,因此要进行吸光度曲线的显示,需要对光谱数据进行压缩。的有效像元有2 160个,要在19264上进行显示,有两种方法:使用翻屏来实现或者使用数据压缩的方式实现。通过观察采集的光谱信号发现,吸收峰峰值只在一个或几个特定的波长出现,而其他波长处的吸光度值则基本一致。因此,文中使用压缩的方法来实现吸光度曲线在液晶上的显示。通过设定采样阀值,把2 160个数据压缩为192个字节的光谱数据,采集的机理是:对低于该阀值的光谱数据则丢弃不用,而对高于其阀值的光谱数据进行存储,并比较前后两个光谱数据的大小,若相等,则只采用其中的一个数据。如果检测到峰峰值比较大的光谱数据,则把此时采集的序号和峰值的幅度进行存储,方便在液晶上显示峰值吸光度。

  利用LCD19264来绘制动态曲线,需要特殊的编程方式来实现。LCD19264是以字节方式写入的,也就是一次写入需要准备8bit的数据位。动态曲线的显示则是以点(相当于1位)的方式进行绘制的,因此绘制动态曲线时需要把字节与点进行转换。19264其行是以页来进行操作的,而列则是按单列来操作,64列为一屏,总共3屏,在LCD19264上画点,横坐标则是液晶的列,而纵坐标则通过页来实现,即横坐标有192个点,纵坐标有64个点(8页),列与横坐标一致,因此不需要转换,而纵坐标由于和液晶的8页对应,因此需要进行转换。按照液晶的结构(图6)从上到下依次为0页,1页,3页,……,7页。例如:要找到50对应于哪一页,首先需要算出50对应于8页中的哪一页,50/8=6,因此50对应于第6页。具体在哪一位可以通过对50取8的余数,50%8=2,那么我们就可以确定50对应于LCD19264的第6页上的第2位,通过在该位写入高电平,则可以把50绘制在液晶上。

  采用线阵CCD的便携式光谱采集系统设计

  3 系统测试结果及分析

  通过对方案进行验证以及对设计的系统电路图进行多次调试和修改,得到了分光光度计硬件结构图(图7)。使用了接插件把LCD19264和TCD1208AP连接于系统接口上,方便扩展性能更好的器件,JTAG口和RS232口主要用来实现CPLD程序、单片机程序的下载,同时RS232口还兼有上传采集数据到PC端的功能。

  


上一页 1 2 下一页

关键词: 线阵 CCD 便携式 光谱采集

评论


相关推荐

技术专区

关闭