新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 可靠性失效分析常见思路(二)

可靠性失效分析常见思路(二)

作者:时间:2013-11-30来源:网络收藏
包括确定顶事件、确定初始条件和确定不许可的事件等。

  (5)对系统中各事件之间的逻辑关系及条件必须分析清楚,不能有逻辑上的紊乱及条件上的矛盾。

  例如,低合金超高强度钢一般在低温回火或等温(马氏体等温或贝氏体等温)淬火状态下使用。在服役期间,低合金超高强度钢也常发生断裂失效(破坏)。失效树的顶事件就是构件的破坏。这种破坏可由不同的事件——疲劳、过载、应力腐蚀开裂及具有最大可能性的氢脆等等——造成的。这些事件,每一个都通过“或门”与顶事件相连(图3)。断口分析表明,失效残骸的断口形态不同于过载和疲劳。因此,过载和疲劳是不发展事件,并分别用棱形表示 中国论坛:http://kekaoxing.com/club

  在图3中。当然如果断口分析不能排除这些事件时,那么仍有必要进一步地发展。对于氢脆来说,它是在临界应力强度和临界含氢量共同作用下发生的,因此临界应力强度(图3中的事件15)和临界含氢量(图3中的事件14)应采用“与门”与氢脆(图3中的事件4)相连,其中临界含氢量为不发展事件。

  应力腐蚀开裂(图3中事件3)则是临界应力强度(图3中事件6)和造成开裂元素的临界浓度可以是临界氢浓度(图3中事件10),也可以是除氢以外的其他物质的临界含量(图3中事件11),这样事件10和事件11应用“或门”与事件7相连。事件10和事件11均为不发展事件,故均用棱形框表示。可以看出,如果认为应力腐蚀开裂与氢脆都是由于临界应力强度上临界氢浓度引起的,那末在失效树的第一行不能区分应力腐蚀开裂和氢脆,不过,应力腐蚀开裂和氢脆应该在断裂源的起始位置上找到差别。应力腐蚀开裂的临界氢浓度应在暴露表面上显示出来,因此它的断裂源一般在“暴露表面上”,而氢脆的临界氢浓度可能在电镀表面或次表面先达到,因此它的断裂源应在电镀表面上或次表面上。所以是应力腐蚀开裂还是氢脆在失效树的第二行就可以初步确定了。虽然应力腐蚀开裂和氢脆的条件之一都是临界应力强度,并且它们临界应力强度都取决于构件上的载荷(事件8和事件16)和材料的流变应力大于材料的临界门槛应力σi(当然,应力腐蚀的门槛应力数值与氢脆的门槛应力数值不同),但是由于应力腐蚀开裂一般起始于暴露表面,构件的表面流变应力对构件的平均载荷不敏感,而对表面的加工缺陷等原因所造成应力集中或应变集中则十分敏感,因而在应力腐蚀系统中,加工缺陷处的流变应力大于材料的应力腐蚀门槛应力用“或门”与事件9相连;在氢脆系统中,由于氢脆一般起源于电镀层的次表面,构件上的载荷(事件16)可以是施加的载荷(事件18)也可以是构件内部的残余应力(事件19),故事件18和事件19用“或门”与事件16相连。材料的氢脆门槛应力受表面加工缺陷的影响较小,不需要进一步的展开分析(事件17为不发展事件)了。

  从以上FTA法在构件断裂中的具体应用情况可以看出,FTA法可以对特定的失效事件作层层深入地逻辑推理分析,在清晰的失效树的帮助下,最后找到这一特定失效事件的失效原因或该构件的薄弱环节,因此,FTA法是进行的好方法之一。

失效树建立后可以进行定性的也可以是定量的分析。失效树的定性分析的目的是为了寻找系统的最薄弱的环节,即发现系统最容易发生失效的环节,以便集中力量解决这些薄弱环节,提高系统的。失效树的定量分析的任务就是要计算或估计系统顶事件发生的概率及系统的一些指标。一般来说,多部件复杂系统的失效树定量分析是十分困难的。有时无法用解析法求其精确结果,而只能用一些简化的方法进行估算。

  

可靠性失效分析常见思路(二)

  图3某超高强度钢构件破坏的失效树 kekaoxing.com/club

  1.构件破坏2.过载3.应力腐蚀4.氢脆5.疲劳6.临界应力强度7.造成开裂元素的临界浓度 8.构件上的载荷9.流变应力>σi10.临界氢含量11.除氢以外,其它物质的临界含量12.加工缺陷>σi13.使用过程中的发展14.临界氢含量15.临界应力强度16.流变应力>σi17.构件上的载荷18.施加载荷>i19.残余应力>Si

  3 结语

  思路是失效分析成败的关键之



关键词: 可靠性 失效分析

评论


相关推荐

技术专区

关闭