新闻中心

EEPW首页 > 物联网与传感器 > 设计应用 > 用于实现O-RAN无线解决方案的5G技术设备

用于实现O-RAN无线解决方案的5G技术设备

作者:Brad Brannon时间:2022-03-24来源:ADI收藏
编者按:O-RAN旨在推动无线社区转型、开辟新无线设备通道和推动创新,以履行3GPP关于5G的承诺。要取得成功并保持高性价比,必须提供开源的无线电设备和优化的5G技术。本文将介绍其中一种用于设计和构建高功效比的解决方案。

主要无线电元件

本文引用地址:http://www.eepw.com.cn/article/202203/432337.htm

在过去10年,集成式收发器已发展成为高性能平台。 ADI RadioVerse™ 系列包含多种集成式收发器,它们支持高达200 MHz占用带宽,集成了DPD等先进功能。该系列产品不仅满足技术设备的要求,也一如既往地支持LTE和多载波GSM RF要求。对于这些设备,虽然我们在不断进行新一代的开发,最新一代如图2所示,为 ADRV9029,是一种4T4R配置。还提供其他产品,包括带和不带集成式DPD,以及采用包括2T2R在内的其他配置的设备。

图2. ADRV9029收发器

每款RadioVerse设备都包含构建完整无线电所需的一切(LNA和PA除外)。这包括发送和接收、合成器和时钟等所有功能。还包括运行AGC和增益控制放大器所需的状态机和VGA。虽然RadioVerse产品都使用高达6 GHz的宽带,但LNA和PA并非如此,必须制定频段或频率范围。因此,为了完成无线电设计,必须将合适的LNA和PA与RadioVerse IC配对。以下章节将描述 NR小型蜂窝的接收和发送信号链,并对如何选择这些设备提供一些见解。

接收器信号链示例

ADRV9029与 ADRF5545A 组合使用时(如图3所示),可以轻松构建2芯片接收器。 ADRF5515 引脚兼容,也可以使用。它与几个无源元件组合,就可以构成非常紧凑的高性能接收器设计,如图4中的信号链所示。此架构的关键优势在于可能达到高水平集成,如此不但可以实现极低的实施成本,还能使功耗降至最低。4

图3. ADRF5545A双通道TDD接收器前端

图4. 接收器信号链详情

RadioVerse系列的架构取消了经典接收器设计中常使用的许多元件,包括一些RF放大、滤波和剩余大部分无线电功能的集成,包括通道滤波器(模拟和数字)和基带放大器。这些元件通常是系统中最大、功率最高的设备,相比包括直接RF采样在内的其他架构,此架构可以显著节省成本。

如图4所示,小型蜂窝接收器系列包括环形器(适用于TDD应用)、ADRF5545A、SAW/BAW(表面声波/体声波)或整体式滤波器、巴伦和收发器。鉴于ADRV9029和RadioVerse系列中的其他产品具有出色的噪声性能和低输入IP1dB,所以无需使用其他放大器或VGA。使用这个信号链之后,从天线到数据比特位,可以支持整个系统低至2 dB的噪声系数。虽然此设计中包含一个集成式RF前端模块(FEM),但许多设计仍然使用分立式设计(此处不予详述)。集成式FEM利用集成来满足天线滤波器稍微提高的滤波器要求,但仍然提供对于许多高度集成的解决方案来说具有吸引力的设计,例如大规模MIMO和其他TDD部署。通常,使用分立式前端来实现FDD设计。

假设LNA之前的耗损为约0.5 dB,如果带滤波器的耗损为1 dB,根据两款有源设备的数据手册规格,则整个接收器信号链的标称NF应为约2 dB。假设与MCS-4一致的信噪比和信纳比为0 dB,那么G-FR1-A1-1 载波(~5 MHz)的参考灵敏度为约–104.3 dBm。这足以满足章节7.2.2中38.104的广域传导要求,且留有余量,对局域/小型蜂窝来说也绰绰有余,如表1所示,在这种情况下需要–93.7 dBm。一些低性能小型蜂窝应用可能能够使用单级LNA,例如GRF2093,后接一个SAW滤波器。

1648088706506729.png

表1. 38.104接收器分类

此外,38.104章节的7.4.1要求在低于–52 dBm(广域)ACS阻塞下,接收器的衰减不超过6 dB。根据图5所示的NF与输入电平,在–52 dBm时产生的额外噪声并不比在更低电平下产生的噪声多。事实上,本底噪声在Blocker信号达到–40 dBm后才会上升,非常适合需要–44 dBm容差的局域ACS。

图5. 接收器NF与输入电平

一般阻塞要求(7.4.2)要求对相关频段内的接收器施加–35 dBm(局域)的干扰,偏移为±7.5 MHz,衰减不得超过6 dB。从图5显示的ADI公司的信号链的性能来看,衰减仅为约0.9 dB。窄带阻塞是一种功率稍低的CW类阻塞,但这也不是问题。

章节7.5.2中的带外阻塞可能算是一种更为有趣的挑战。其中,–15 dBm信号被传输至天线输入。对于频率低于200 MHz的小型蜂窝,此信号最接近频带边缘的频率为20 MHz。测试要求对1 MHz至12.75 GHz范围进行扫描,不包括20 MHz工作频率以内的频段。这里,有几个因素会推动信号链产生优势。第一,环形器具有有限带宽,会拒绝许多带外信号,但包含在内的信号不会产生很大影响。第二,ADRF5545A之后的滤波器会提供一定程度的滤波,一般来说,对于带外20 MHz,~20 dB抑制是合理的。第三,ADI收发器系列独有且最有用的特性要属内置的带外抑制,这是收发器结构固有的特性。在ADI公司应用笔记 AN-1354的图20中,固有的带外抑制被表示为增加的阻塞信号电平。在该应用笔记中,围绕通带任一方向的频率扫描显示,在相同等级的衰减下,可以支持更大的信号。在该应用笔记中可以看到,在靠近频带边缘的位置,6 dB衰减可以对应10 dB。之后,集成式滤波器对带外信号进行大幅衰减,这些信号不会在带内混叠,主要被片内滤波和外部滤波衰减。

这些模块将–15 dBm带外干扰滤波到约–40 dBm至–45 dBm,直到20 MHz排斥带。继续向前,可能受到更高的抑制。在这个阶段,图5显示出现的衰减可能非常小。

前端模块的线性度可能是更大的问题。此时,可能得出很大的IM3产物。根据实际选择的FEM,可能需要将频带选择滤波器移动到第二个LNA之前,以保护其不受带外信号影响,这通常会产生较大的IM产物。无法在这类FEM的级之间放置滤波器,所以需要采用备用选项。

为了帮助限制大型带外阻断器的互调的影响,典型的FEM包含二级旁路开关,用于降低增益和保护二级不会被驱动产生非线性,如图3所示。切换LNA增益使信号链SNR降低1 dB,但限制这些大型阻断器引起的交调失真有助于保护整体动态范围,抵消噪声性能的损失。总体而言,如此产生的最差NF为约5.7 dB,这仍然在参考灵敏度的局域(小型蜂窝)覆盖范围要求之内。剩余的滤波器要求由天线滤波器提供,抑制可以根据接收器FEM的低增益压缩点和IP3决定。

变送器信号链示例

将ADRV9029和合适的RF驱动放大器,或RFVGA组合使用时(访问 analog.com/rf 了解更多选项),可以轻松构建合适的PA、紧凑的室内微微蜂窝、室外微微蜂窝或室外微蜂窝5。这些5G技术设备与几个无源元件组合,就可以构成非常紧凑且高效的变送器设计,如图6中的信号链所示。此架构的关键优势在于可能达到的高水平集成,通过使用所选的ADI收发器具备的集成式DPD功能,不但可以实现极低的实施成本,还能使功耗降至最低。

图6. 变送器信号链详情

如图6所示,小型蜂窝变送器系列由环形器、PA、滤波器和收发器组成。此外,电路的PA输出端中包含一个耦合器,用于监测输出失真(也可以用于监测天线的VSWR和正向功率),可以配合DPD使用,以改善发送功能的运行效率,以及改善杂散性能。虽然可以使用外部DPD,但选择的ADI收发器包含完全集成的DPD,该DPD采用350 mW或更低的增量功率,具体由给定的PA所需的校正量决定。低功率PA需要进行的校正较少,所以DPD消耗的功率更低。此外,由于DPD的带宽扩展完全在收发器内部进行,观察接收器SERDES路径被完全取消,变送器有效载荷降低,使得集成式DPD将SERDES路径的数量降低至外部基带芯片的一半。FPGA中的等效DPD通常具有10倍以上的功率,对于低功耗小型蜂窝和大规模MIMO来说是无效或低效的。但是,通过将DPD集成到收发器中,非常低的功耗和低成本使得DPD能被用于低功耗小型蜂窝中,可以在不增加外部计算负担的情况下提高效率和变送线性度。

图7和图8显示ADI的DPD用于低功耗和中功耗小型蜂窝应用的示例。图示的激励源是针对5个相邻的20 MHz LTE载波,总共100 MHz。一般来说,LTE要求最低达到45 dB ACLR,大多数部署都可以超过此值。ADI运行一个连续测试实验室,始终会检查所有功率等级的新PA。查看 功率放大器测试报告,或咨询工厂,获取ADI提供的可用的DPD技术的最新信息,以及最近通过测试的PA的列表。

图7. 带和不带DPD的典型PA频谱,RF总和为26 dBm

图8. 带和不带DPD的典型PA频谱,RF总和为37 dBm




关键词: O-RAN 5G

评论


相关推荐

技术专区

关闭