新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于射频无线电力传输供电的无电池资产跟踪模块的先进监控系统

基于射频无线电力传输供电的无电池资产跟踪模块的先进监控系统

作者:意法半导体,Roberto La Rosa,Catherine Dehollain,Patrizia Livreri时间:2020-08-20来源:电子产品世界收藏
编者按:涉及精准定位和运输数据的资产跟踪模块,非常适合组建无电池节点的无线传感器网络(WSN)。无电池的网络节点几乎可以部署在任何环境中,对维护工作的需求很少甚至没有。为了满足市场对先进无电池传感器标签解决方案日益增长的需求,本文提出一个在无线传感器网络中识别资产和监测资产移动速度的跟踪系统,无电池的资产标签通过射频无线电力传输(WPT)架构接收数据通信所需电能,并采用一个独有的测速方法生成时域速度读数。


本文引用地址:http://www.eepw.com.cn/article/202008/417340.htm

参考文献:

1. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. Unlocking the Potential of theInternet of Things; McKinsey Global Institute: New York, NY, USA, 2015.

2. Alioto, M. Enabling the Internet of Things: From Integrated Circuits to Integrated Systems; Springer:Berlin/Heidelberg, Germany, 2017.

3. Abella, C.; Bonina, S.; Cucuccio, A.; D’Angelo, S.; Giustolisi, G.; Grasso, A.; Imbruglia, A.; Mauro, G.; Nastasi,G.; Palumbo, G.; et al. Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/OfficeAutomation. IEEE Sensors J. 2019, 9, 3501–3512. [CrossRef]

4. Viani, F.; Robol, F.; Polo, A.; Rocca, P.; Oliveri, G.; Massa, A. Wireless architectures for heterogeneoussensing in smart home applications: Concepts and real implementation. Proc. IEEE 2013, 101, 2381–2396.[CrossRef]

5. Alioto, M.; Shahghasemi, M. The Internet of Things on its edge: Trends toward its tipping point. IEEE Consum.Electron. Mag. 2018, 7, 77–87. [CrossRef]

6. Teixidó, P.; Gómez-Galán, J.; Gómez-Bravo, F.; Sánchez-Rodríguez, T.; Alcina, J.; Aponte, J. Low-Power Low-Cost Wireless Flood Sensor for Smart Home Systems. Sensors 2018, 18, 3817. [CrossRef]

7. Guo, K.; Lu, Y.; Gao, H.; Cao, R. Artificial intelligence-based semantic internet of things in a user-centric smartcity. Sensors 2018, 18, 1341. [CrossRef]

8. Mujica, G.; Rodriguez-Zurrunero, R.; Wilby, M.; Portilla, J.; Rodríguez González, A.; Araujo, A.; Riesgo, T.;Vinagre Díaz, J. Edge and Fog Computing Platform for Data Fusion of Complex Heterogeneous Sensors.Sensors 2018, 18, 3630. [CrossRef]

9. Andò, B.; Baglio, S.; La Malfa, S.; Pistorio, A.; Trigona, C. A smart wireless sensor network for AAL. InProceedings of the 2011 IEEE International Workshop on Measurements and Networking Proceedings (M&N),Anacapri, Italy, 10–11 October 2011; pp. 122–125.

10. La Rosa, R.; Dehollain, C.; Pellitteri, F.; Miceli, R.; Livreri, P. An RF Wireless Power Transfer system to powerbattery-free devices for asset tracking. In Proceedings of the 26th IEEE International Conference on ElectronicsCircuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 1–4.

11. Zhu, M.; Hassanalieragh, M.; Chen, Z.; Fahad, A.; Shen, K.; Soyata, T. Energy-Aware Sensing in Data-Intensive Field Systems Using Supercapacitor Energy Buffer. IEEE Sensors J. 2018, 16, 3372–3383. [CrossRef]

12. Mouapi, A.; Hakem, N.; Delisle, G.Y. A new approach to design of RF energy harvesting system to enslavewireless sensor networks. ICT Express 2017, 4, 228–233. [CrossRef]

13. Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew.Sustain. Energy Rev. 2016, 55, 1041–1054. [CrossRef]

14. Wu, F.; Rüdiger, C.; Yuce, M.R. Real-time performance of a self-powered environmental IoT sensor networksystem. Sensors 2017, 17, 282. [CrossRef]

15. Cheung, W.F.; Lin, T.H.; Lin, Y.C. A real-time construction safety monitoring system for hazardous gasintegrating wireless sensor network and building information modeling technologies. Sensors 2018, 18, 436.[CrossRef] [PubMed]

16. Habibzadeh, H.; Qin, Z.; Soyata, T.; Kantarci, B. Large-scale distributed dedicated-and non-dedicated smartcity sensing systems. IEEE Sensors J. 2017, 17, 7649–7658. [CrossRef]

17. Martinez, B.; Monton, M.; Vilajosana, I.; Prades, J.D. The power of models: Modeling power consumption forIoT devices. IEEE Sensors J. 2015, 15, 5777–5789. [CrossRef]

18. Qin, H.; Zhang, W. Zigbee-assisted power saving management for mobile devices. IEEE Trans. Mob. Comput.2014, 13, 2933–2947. [CrossRef]

19. Chen, J.H.; Chen, Y.S.; Jiang, Y.L. Energy-Efficient Scheduling for Multiple Latency-Sensitive Bluetooth LowEnergy Nodes. IEEE Sensors J. 2018, 18, 849–859. [CrossRef]

20. Aziz, A.A.; Sekercioglu, Y.A.; Fitzpatrick, P.; Ivanovich, M. A survey on distributed topology control techniquesfor extending the lifetime of battery powered wireless sensor networks. IEEE Commun. Surv. Tutorials 2013, 15,121–144. [CrossRef]

21. Beutel, J.; Kasten, O.; Mattern, F.; Römer, K.; Siegemund, F.; Thiele, L. Prototyping wireless sensor networkapplications with BTnodes. In European Workshop on Wireless Sensor Networks; Springer: Berlin/Heidelberg,Germany, 2004; pp. 323–338.

22. Nachman, L.; Kling, R.; Adler, R.; Huang, J.; Hummel, V. The Intel® Mote platform: A Bluetooth-based sensornetwork for industrial monitoring. In Proceedings of the 4th International Symposium on Information Processingin Sensor Networks; IEEE Press: Los Angeles, CA, USA, 2005; p. 61.

23. Livreri, P.; Castiglia, V.; Pellitteri, F.; Miceli, R. Design of a Battery/Ultracapacitor Energy Storage System forElectric Vehicle Applications. In Proceedings of the 2018 IEEE 4th International Forum on Research andTechnology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–5.

24. Pellitteri, F.; Castiglia, V.; Livreri, P.; Miceli, R. Analysis and design of bi-directional DC-DC converters forultracapacitors management in EVs. In Proceedings of the 2018 Thirteenth International Conference onEcological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 April 2018; pp. 1–6.

25. Yamawaki, A.; Serikawa, S. Battery Life Estimation of Sensor Node with Zero Standby Power Consumption.InProceedings of the 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE IntlConference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on DistributedComputingand Applications for Business Engineering (DCABES), Paris, France, 24–26 August 2016; pp. 166–172.

26. La Rosa, R.; Trigona, C.; Andò, B.; Baglio, S. MEMS based Transducer for Zero-Energy Standby Application.

In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT), Naples,Italy,4–6 June 2019; pp. 12–15.

27. Perilli, L.; Scarselli, E.F.; La Rosa, R.; Canegallo, R. Wake-Up Radio Impact in Self-Sustainability of Sensorand Actuator Wireless Nodes in Smart Home Applications. In Proceedings of the 2018 Ninth International Greenand Sustainable Computing Conference (IGSC), Pittsburgh, PA, USA, 22–24 October 2018; pp. 1–7.

28. La Rosa, R.; Aiello, N.; Zoppi, G. An innovative system capable to turn on any turned off electrical appliance bymeans of an efficient optical energy transfer. In Proceedings of the PCIM Europe 2014, International Exhibitionand Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management,Nuremberg, Germany, 20–22 May 2014; VDE:VERLAG GMBH: Berlin, Germany; Offenbach, Germany, 2014;pp. 1559–1566.

29. La Rosa, R.; Aiello, N.; Zoppi, G. RF remotely-powered integrated system to nullify standby power consumptionin electrical appliances. In Proceedings of the 42nd Annual Conference of the IEEE Industrial ElectronicsSociety (IECON 2016), Florence, Italy, 23–26 October 2016; pp. 1162–1164.

30. Trigona, C.; Andò, B.; Baglio, S.; La Rosa, R.; Zoppi, G. Vibration-based Transducer for Zero-Energy standbyapplications. In Proceedings of the Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp.1–4.

31. Trigona, C.; Ando’, B.; Baglio, S.; La Rosa, R.; Zoppi, G. Sensors for Kinetic Energy Measurement Operatingon “Zero-Current Standby”. IEEE Trans. Instrum. Meas. 2017, 66, 812–820. [CrossRef]

32. Gerber, D.; Meier, A.; Hosbach, R.; Liou, R. Zero Standby Solutions with Optical Energy Harvesting from aLaser Pointer. Electronics 2018, 7, 292. [CrossRef]

33. Bedogni, L.; Bononi, L.; Canegallo, R.; Carbone, F.; Di Felice, M.; Scarselli, E.F.; Montori, F.; Perilli, L.; Cinotti,

T.S.; Trotta, A. Dual-Mode Wake-Up Nodes for IoT Monitoring Applications: Measurements and Algorithms. InProceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–

24 May 2018; pp. 1–7.

34. Trotta, A.; Di Felice, M.; Bononi, L.; Natalizio, E.; Perilli, L.; Scarselli, E.F.; Cinotti, T.S.; Canegallo, R. BEEDRONES:Energy-efficient Data Collection on Wake-Up Radio-based Wireless Sensor Networks. InProceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 547–553.

35. Rosa, R.L.; Zoppi, G.; Finocchiaro, A.; Papotto, G.; Donato, L.D.; Sorbello, G.; Bellomo, F.; Carlo, C.A.D.;Livreri, P. An over-the-distance wireless battery charger based on RF energy harvesting. In Proceedings of the

2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applicationsto Circuit Design (SMACD), Giardini Naxos, Italy, 12–15 June 2017; pp. 1–4.

36. de Fazio, R.; Cafagna, D.; Marcuccio, G.; Visconti, P. Limitations and Characterization of Energy StorageDevices for Harvesting Applications. Energies 2020, 13, 783. [CrossRef]

37. Selvan, S.; Zaman, M.; Gobbi, R.; Wong, H.Y. Recent advances in the design and development of radiofrequency-based energy harvester for powering wireless sensors: A review. J. Electromagn. Waves Appl. 2018,32, 2110–2134. [CrossRef]

38. Pandey, S.; Zalke, J.; Nandanwar, R.; Verma, A. Design and Analysis of Piezoelectric Energy HarvestingCircuit for Rechargeable Ultra-Low Weight Lithium-Ion Batteries. J. Eng. Sci. Technol. Rev. 2018, 11, 77–83.

39. Altinel, D.; Kurt, G.K. Modeling of Multiple Energy Sources for Hybrid Energy Harvesting IoT Systems. IEEEInternet Things J. 2019, 6, 10846–10854. [CrossRef]

40. Anwar, A.; Shah, S.T.; Hasan, S.F.; Shin, D.R. SWIPT-Based Three-Step Multiplicative Amplify-and-ForwardTwo-Way Relay Networks with Non-Linear Energy Conversion Model. In Proceedings of the 2018 IEEE 4thInternational Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp.152–157.

41. La Rosa, R.; Dehollain, C.; Pillitteri, F.; Miceli, R.; Livreri, P. A Battery-free Asset Monitoring System based onRF Wireless Power Transfer. In Proceedings of the 2020 IEEE 20th Melecon Conference, Palermo, Italy, 16–18June 2020; pp. 1–4.

42. La Rosa, R.; Zoppi, G.; Di Donato, L.; Sorbello, G.; Di Carlo, C.; Livreri, P. A Battery-Free Smart SensorPowered with RF Energy. In Proceedings of the 2018 IEEE 4th International Forum on Research andTechnology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–4.

43. La Rosa, R.; Trigona, C.; Zoppi, G.; Di Carlo, C.; Di Donato, L.; Sorbello, G. RF energy scavenger for batteryfreeWireless Sensor Nodes. In Proceedings of the 2018 IEEE International Instrumentation and MeasurementTechnology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–5.

44. Castorina, G.; Di Donato, L.; Morabito, A.F.; Isernia, T.; Sorbello, G. Analysis and design of a concreteembedded antenna for wireless monitoring applications [antenna applications corner]. IEEE Antennas Propag.Mag. 2016, 58, 76–93. [CrossRef]

45. Mauro, G.; Castorina, G.; Morabito, A.; Di Donato, L.; Sorbello, G. Effects of lossy background and rebars onantennas embedded in concrete structures. Microw. Opt. Technol. Lett. 2016, 58, 2653–2656. [CrossRef]

46. Loubet, G.; Takacs, A.; Dragomirescu, D. Implementation of a battery-free wireless sensor for cyber-physicalsystems dedicated to structural health monitoring applications. IEEE Access 2019, 7, 24679–24690. [CrossRef]

47. Loubet, G.; Takacs, A.; Gardner, E.; De Luca, A.; Udrea, F.; Dragomirescu, D. LoRaWAN battery-free wirelesssensors network designed for structural health monitoring in the construction domain. Sensors 2019, 19, 1510.[CrossRef]

48. Dargie, W. Dynamic power management in wireless sensor networks: State-of-the-art. IEEE Sensors J. 2012,12, 1518–1528. [CrossRef]

49. Lee, D.S.; Liu, Y.H.; Lin, C.R. A wireless sensor enabled by wireless power. Sensors 2012, 12, 16116–16143.[CrossRef]

50. Grasso, L.; Sorbello, G.; Ragonese, E.; Palmisano, G. Codesign of Differential-Drive CMOS Rectifier andInductively Coupled Antenna for RF Harvesting. IEEE Trans. Microw. Theory Tech. 2019, 68, 365–376.[CrossRef]

51. La Rosa, R.; Livreri, P.; Trigona, C.; Di Donato, L.; Sorbello, G. Strategies and Techniques for PoweringWireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer. Sensors 2019, 19, 2660.[CrossRef]

52. Kazanc, O.; Maloberti, F.; Dehollain, C. Remotely-powered front-end at 2.45 GHz for real-time continuoustemperature sensing. In Proceedings of the 2018 IEEE International Conference On Rfid (Rfid), Orlando, FL,USA, 10–12 April 2018; pp. 1–7.

53. Di Carlo, C.; Di Donato, L.; Mauro, G.; La Rosa, R.; Livreri, P.; Sorbello, G. A circularly polarized wideband highgain patch antenna for wireless power transfer. Microw. Opt. Technol. Lett. 2018, 60, 620–625. [CrossRef]

54. Pizzotti, M.; Perilli, L.; Del Prete, M.; Fabbri, D.; Canegallo, R.; Dini, M.; Masotti, D.; Costanzo, A.; FranchiScarselli, E.; Romani, A. A long-distance RF-powered sensor node with adaptive power management for IoTapplications. Sensors 2017, 17, 1732. [CrossRef] [PubMed]

55. Baroi, S.; Islam, M.S.; Baroi, S. Design and Simulation of Different Wireless Power Transfer Circuits.InProceedings of the 2017 2nd International Conference on Electrical & Electronic Engineering (ICEEE),Rajshahi,Bangladesh, 27–29 December 2017; pp. 1–4.

56. Ghanad, M.; Green, M.; Dehollain, C. A 30 W Remotely Powered Local Temperature Monitoring ImplantableSystem. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 54. [CrossRef]

57. Soyata, T.; Copeland, L.; Heinzelman, W. RF energy harvesting for embedded systems: A survey of tradeoffsand methodology. IEEE Circuits Syst. Mag. 2016, 16, 22–57. [CrossRef]

58. Kapucu, K.; Dehollain, C. A passive UHF RFID platform for sensing applications. In Proceedings of the 20156th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015;pp. 146–151.

59. Kilinc, E.G.; Ghanad, M.A.; Maloberti, F.; Dehollain, C. A remotely powered implantable biomedical system withlocation detector. IEEE Trans. Biomed. Circuits Syst. 2014, 9, 113–123. [CrossRef]

60. Kazanc, O.; Rodríguez-Rodríguez, J.A.; Delgado-Restitute, M.; Maloberti, F.; Dehollain, C. Far-field UHFremotely powered front-end for patient monitoring with wearable antenna. In Proceedings of the 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, France, 16–19 June 2013; pp. 1–4.

61. Piñuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF energy harvesting in urban and semi-urbanenvironments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [CrossRef]

62. Zhang, Y.; Zhang, F.; Shakhsheer, Y.; Silver, J.D.; Klinefelter, A.; Nagaraju, M.; Boley, J.; Pandey, J.;

Shrivastava, A.; Carlson, E.J.; et al. A Batteryless 19 uW MICS/ISM-Band Energy Harvesting Body Sensor NodeSoC for ExG Applications. IEEE J. Solid State Circuits 2013, 48, 199–213. [CrossRef]

63. Percy, S.; Knight, C.; Cooray, F.; Smart, K. Supplying the power requirements to a sensor network using radiofrequency power transfer. Sensors 2012, 12, 8571–8585. [CrossRef]

64. Kazanc, O.; Maloberti, F.; Dehollain, C. Simulation oriented rectenna design methodology for remote poweringof wireless sensor systems. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems,Seoul, Korea, 20–23 May 2012; pp. 2877–2880.

65. Chen, G.; Fojtik, M.; Kim, D.; Fick, D.; Park, J.; Seok, M.; Chen, M.T.; Foo, Z.; Sylvester, D.; Blaauw, D.Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In Proceedings of the 2010IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp.288–289.

66. Pillin, N.; Joehl, N.; Dehollain, C.; Declercq, M.J. Wireless voltage regulation for passive transponders using anif to communicate. IEEE Trans. Circuits Syst. I: Regul. Pap. 2009, 57, 714–724. [CrossRef]

67. Lee, D. Energy harvesting chip and the chip based power supply development for a wireless sensor network.Sensors 2008, 8, 7690–7714. [CrossRef]

68. Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [CrossRef]

69. Sidhu, R.K.; Ubhi, J.S.; Aggarwal, A. A Survey Study of Different RF Energy Sources for RF Energy Harvesting.In Proceedings of the 2019 International Conference on Automation, Computational and TechnologyManagement (ICACTM), London, UK, 24–26 April 2019; pp. 530–533.

70. Bae, J.; Yi, S.H.; Choi, W.; Koo, H.; Hwang, K.C.; Lee, K.Y.; Yang, Y. 5.8 GHz High-Efficiency RF–DCConverter Based on Common-Ground Multiple-Stack Structure. Sensors 2019, 19, 3257. [CrossRef] [PubMed]

71. Bluetooth. 2010. Available online.

72. Larosa, R.; Zoppi, G. Method of Operating Radio-Frequency Powered Devices, Corresponding Circuit andDevice. U.S. Patent Application No. 15/975,347, 1 January 2018.

73. Gosselin, P.; Puddu, R.; Carreira, A.; Ghanad, M.; Barbaro, M.; Dehollain, C. A CMOS automatic tuning systemto maximize remote powering efficiency. In Proceedings of the 2017 IEEE International Symposium on Circuitsand Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

74. Scorcioni, S.; Bertacchini, A.; Larcher, L. A 868MHz CMOS RF-DC power converter with- 17dBm input powersensitivity and efficiency higher than 40% over 14dB input power range. In Proceedings of the 2012Proceedings of the ESSCIRC (ESSCIRC), Bordeaux, France, 17–21 September 2012; pp. 109–112.

75. Bertacchini, A.; Larcher, L.; Maini, M.; Vincetti, L.; Scorcioni, S. Reconfigurable RF energy harvester withcustomized differential PCB antenna. J. Low Power Electron. Appl. 2015, 5, 257–273. [CrossRef]

76. Abdelhalem, S.H.; Gudem, P.S.; Larson, L.E. An RF–DC converter with wide-dynamic-range input matching forpower recovery applications. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 336–340. [CrossRef]

77. Lu, Y.; Dai, H.; Huang, M.; Law, M.K.; Sin, S.W.; Seng-Pan, U.; Martins, R.P. A wide input range dual-pathCMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2016, 64, 166–170.[CrossRef]

78. Xu, H.; Lorenz, M.; Bihr, U.; Anders, J.; Ortmanns, M. Wide-band efficiency-enhanced CMOS rectifier. InProceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC,Australia, 1–5 June 2014; pp. 614–617.

79. La Rosa, R. Power Tracking Circuit, Corresponding System and Method. U.S. Patent Application No.16/283,067, 1 January 2019.

80. Dickson, J.F. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multipliertechnique. IEEE J. Solid State Circuits 1976, 11, 374–378. [CrossRef]

81. lairdtech. 2018. Available online


上一页 1 2 3 4 5 下一页

评论


相关推荐

技术专区

关闭