新闻中心

EEPW首页 > 汽车电子 > 市场分析 > 检查需要预防的大,中,小三类汽车潜在缺陷

检查需要预防的大,中,小三类汽车潜在缺陷

作者:时间:2019-04-23来源:Entegris收藏

这些致命微粒由于较大,通常更容易使用内联计量方法发现,并在晶圆厂进行过滤来去除。中等大小的微粒不易通过传统计量系统发现或通过传统过滤器去除,并且也可能导致问题。它们可以在设备封装步骤的老化制程中被发现,但无法去除。因此,那些在老化中被发现存在故障的设备只能被丢弃,从而造成可销售商品的损失。用于发现这些大中型微粒引起的缺陷的设备和方法是众所周知且经过证实的,并且已成为任何电子设备可持续生产的一个组成部分。

本文引用地址:http://www.eepw.com.cn/article/201904/399782.htm

4.png

小威力,大问题

各种检测已经开始描绘出潜在缺陷与污染物(如微粒,凝胶,金属离子和有机物)之间的关系。这些是在晶圆厂采取标准预防措施和老化可用性测试后仍然存在的污染物。尽管导致了短路,开路或任何电解质泄漏的污染物会被检测到,但较小的和中等大小的污染物仍可能会嵌入在相应的层中,并随着时间的推移而引发问题。

业界对可靠性故障原因的研究已有几十年了。其中的原因包括电迁移,氧化层击穿,热载流子注入 (HCI),应力导致的开裂和负偏压温度不稳定性 (NBTI) 等效应。此外,还发现了与扩散,腐蚀和可塑性有关的更多机制。随着可靠性目标变得更加严格,将需要采用更多机制,  对与微粒和金属污染物有关的潜在缺陷进行控制,从而  使可靠性达到新的水平。

微粒大小对栅氧化层的影响

图 5 从三个问题层次总结了小微粒,中等大小微粒和大微粒对栅氧化层完整性的潜在影响。最大的微粒可能会破坏芯片上的特征图案或干扰不同材料的分层,并导致“致命”缺陷。去除大微粒可以立即提高良率,并且可以很轻松地通过计量系统发现并通过标准的半导体液体过滤器和净化器去除这些大微粒。阻止或控制大微粒的成本不高。但是,一旦晶圆在半导体晶圆厂中生产出来,这些微粒和任何相关缺陷将会永久嵌入其中,无法修复。

1555989168624637.png

不当的过滤或计量方法可能会漏掉中等大小的微粒,这些微粒可能会也可能不会在老化测试中导致故障。由于这些微粒不会完全破坏芯片上的特征图案或干扰不同材料的分层,因此它们不会导致设备的即时故障。随着时间的推移,这可能会导致安装的部件最终出现故障。为防止潜在缺陷,应在半导体晶圆厂发现并处理这些晶圆缺陷。根据现有的计量技术,发现这些故障的难度会更大,成本也会更高,但在这个制造阶段发现问题可以将不合格的芯片从供应链中剔除。可以通过加强过滤和净化操作来预防这些缺陷。

下一个挑战是可能无法通过晶圆厂的过滤器去除或由计量系统检测到的小微粒。由于它们只是部分地破坏芯片上的特征图案,或部分地干扰不同材料的分层,因此它们不会导致设备的即时故障,也不会在芯片和模块制造过程中的老化测试中发现。它们可能导致的恶化发生得更慢,从而导致潜在故障,这种故障可能在芯片通过所有参数检验,老化测试和功能测试并投入使用后的几个月或几年之后才会发生。

请注意,从图 5 中可以发现,微粒密度会随着微粒变小而增加。用自然界作为类比,化学物中的微粒分布与地质状况相似。地球上的沙粒比大石块多得多。在同一图表中,缺陷密度也会随着微粒变小而增加。但是,随着微粒持续变小,缺陷密度将降低并定格在某个点。此时,微粒已经足够小,以至于不再可能产生潜在缺陷,因此不需要成为清除工作的重点。与其他大小的微粒一样,“小”微粒大小的描述将因每个电路设计的容差而异。

应对十亿分率的挑战

业内早已意识到这些问题。适用于AI(人工智能),HPC(高性能计算),加密货币,5G以及其他存储和处理密集型应用的高端芯片的制造商正在努力达到接近 零缺陷的标准。但是,车用芯片传统的特点是,在电力 应用,微控制器和低复杂度传感器中要求有较大的电路 宽度和严格的质量标准,从而在 10-15 年的预期寿命中能够承受恶劣的温度,湿度和振动条件的考验。因此,污染控制通常集中在去除较大的微粒,以免产生威胁良 率的致命缺陷。但随着我们让汽车对我们的出行需求和 整体安全进行更多的自动化控制,汽车制造商越来越意 识到,在个别故障和代价高昂的召回中,污染与潜在缺 陷之间可能存在关系。随着行业期待将设备故障率从ppm 级别降低到ppb级别,半导体制造商将不得不进一步展示满足这些要求的能力。随着在汽车应用中引入新的设备设计,可展示的芯片可靠性将很快成为一个关 键的竞争优势,这将为那些能够达到质量,成本,性能 和可靠性标准的组织创造更多的机会。

正在接受评估的污染控制解决方案将使用现代计量工具和缺陷检测技术的检测方法,并结合使用过滤和净化技术的预防策略。每个晶圆厂和制程都独具特色,因此有不同的解决方案来满足每个晶圆厂和工序遇到的不同需求和限制条件,以便去除导致缺陷的污染物。通过描绘半导体制造制程中的污染物概况并实施去除策略,可提供最全面和可预测的结果。根据所使用的计量技术,可检测到的微粒大小存在限制。在不降低晶圆良率的情况下,小于检测限制大小的微粒仍可能对电路的可靠性造成威胁。随着汽车的互联程度越来越高,且电子设备在汽车价值中所占的比例越来越大,汽车芯片制造商需要探索采用何种方法来实现更高的可靠性能,以解决这些小微粒和杂质造成的问题以及由此产生的潜在缺陷,这一点非常关键。这些工作可以通过实验室中的加速生命周期测试来进行验证,从而无需经过多年的现场测试,便可了解投资回报的情况。

总结

随着汽车与先进的驾驶员辅助系统4 (ADAS)和其他数字系统的集成程度越来越高,汽车将包含种类和数量更多的芯片。这些数字系统将包括传统的传感器,电力设备,微控制器和存储,而 ADAS和其他系统会将我们的手机和其他“高性能计算”处理和存储技术带到汽车上,从而构造出最复杂的数字系统之一。这些汽车对芯片安装到汽车中之后显现的潜在缺陷具有高度敏感性。无论是涉及更换故障元件还是召回和生命安全,纠正这些缺陷的代价都将非常高昂。晶圆厂的检测以及后续的老化测试(旨在发现当场出现故障的芯片)很难发现导致潜在缺陷的小微粒和金属污染物。芯片制造商面临的问题是,通过更严格的测试提高芯片可靠性的做法可能会引发一场关于晶圆良率取舍的哲学辩论。在不降低良率的情况下提高可靠性的一种方法是,在这些小微粒和金属污染物进入芯片生产过程之前,通过更彻底的过滤和净化来去除它们。随着潜在缺陷和污染物之间关系的进一步确定,这种提高可靠性的方法可能会成为一种强有力的竞争优势,并提供极高的投资回报。

参考文献

1 汽车是由代码组成的:NXP 网站。 https://blog.nxp.com/automotive/cars-are-made-of-code

2 制程观察:汽车中的半导体问题。Electroiq  网站 。 http://electroiq.com/blog/2018/01/ process-watch-the-automotive-problem-with- semiconductors/

3 汽车电子设备的价格标签:真正起作用的是什么。EDN 网站。 https://www.edn.com/electronics-blogs/ engineering-on-wheels/4458881/The-price-tag-of-automotive-electronics--What-s- really-at-play

4 如何让自动驾驶汽车变得可靠:半导体工程网站。 https://semiengineering.com/will-autonomous-vehicles-be-reliable/


上一页 1 2 下一页

关键词:

评论


相关推荐

技术专区

关闭