新闻中心

EEPW首页 > EDA/PCB > 业界动态 > 功率半导体氧化镓到底是什么

功率半导体氧化镓到底是什么

作者:时间:2018-12-26来源:半导体行业观察收藏

  目前,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代化合物半导体受到的关注度越来越高,它们在未来的大功率、高温、高压应用场合将发挥传统的硅器件无法实现的作用。特别是在未来三大新兴应用领域(汽车、5G和物联网)之一的汽车方面,会有非常广阔的发展前景。

本文引用地址:http://www.eepw.com.cn/article/201812/396056.htm

  然而,SiC和GaN并不是终点,最近,(Ga2O3)再一次走入了人们的视野,凭借其比SiC和GaN更宽的禁带,该种化合物半导体在更高功率的应用方面具有独特优势。因此,近几年关于的研究又热了起来。

  实际上,并不是很新的技术,多年前就有公司和研究机构对其在领域的应用进行钻研,但就实际应用场景来看,过去不如SiC和GaN的应用面广,所以相关研发工作的风头都被后二者抢去了。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,这使得人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,已成为美国、日本、德国等国家的研究热点和竞争重点。而我国在这方面还是比较欠缺的。

  氧化镓的优势

  氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。这些是氧化镓的传统应用领域,而其在未来的功率、特别是大功率应用场景才是更值得期待的。

  虽然氧化镓的导热性能较差,但其禁带宽度(4.9eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的。由于禁带宽度可衡量使电子进入导通状态所需的能量。采用宽禁带材料制成的系统可以比由禁带较窄材料组成的系统更薄、更轻,并且能应对更高的功率,有望以低成本制造出高耐压且低损失的功率元件。此外,宽禁带允许在更高的温度下操作,从而减少对庞大的冷却系统的需求。

  日本的相关机构在氧化镓功率器件研究方面一直处于业界领先水平。早些年,日本信息通信研究机构(NICT)等研究小组使用Ga2O3试制了“MESFET”(metal-semiconductorfield effect transistor,金属半导体场效应晶体管)。尽管是未形成保护膜(钝化膜)的非常简单的构造,但试制品显示出了耐压高、漏电流小的特性。而使用SiC及GaN来制造相同构造的元件时,要想实现像试制品这样的特性,则是非常难的。

  2012年,Ga2O3的结晶形态确认有α、β、γ、δ、ε五种,其中,β结构最稳定,当时,与Ga2O3的结晶生长及物性相关的研究报告大部分都使用β结构。

  例如,单结晶构造的β-Ga2O3由于具有较宽的禁带,使其击穿电场强度很大,具体如下图所示。β-Ga2O3的击穿电场强度约为8MV/cm,是Si的20多倍,相当于SiC及GaN的2倍以上。

  由图可以看出,β-Ga2O3的主要优势在于禁带宽度,但也存在着不足,主要表现在迁移率和导热率低,特别是导热性能是其主要短板。不过,相对来说,这些缺点对功率器件的特性不会有太大的影响,这是因为功率器件的性能主要取决于击穿电场强度。就β-Ga2O3而言,作为低损失性指标的“巴利加优值(Baliga’s figure of merit)”与击穿电场强度的3次方成正比、与迁移率的1次方成正比。因此,巴利加优值较大,是SiC的10倍、GaN的4倍。

  由于β-Ga2O3的巴利加优值较高,因此,在制造相同耐压的单极功率器件时,元件的导通电阻比采用SiC或GaN的低很多。降低导通电阻有利于减少电源电路在导通时的电力损耗。使用β-Ga2O3的功率器件,不仅能减少导通时的电力损耗,还可降低开关时的损耗,因为在耐压1kV以上的高耐压应用方面,可以使用单极元件。

  比如,设有利用保护膜来减轻电场向栅极集中的单极晶体管(MOSFET),其耐压可达到3k~4kV。而使用硅的话,在耐压为1kV时就必须使用双极元件,即便使用耐压较高的SiC,在耐压为4kV时也必须使用双极元件。双极元件以电子和空穴为载流子,因此与只以电子为载流子的单极元件相比,在导通和截止的开关操作时,沟道内的载流子的产生和消失会耗费时间,损失容易变大。

  在导热率方面,如果导热率低,功率器件很难在高温下工作。不过,实际应用中的工作温度一般不会超过250℃,因此,实际应用当中不会在这方面出现大的问题。而且封装有功率器件的模块和电源电路使用的封装材料、布线、焊锡、密封树脂等的耐热温度最高也不过250℃,因此,功率器件的工作温度也要控制在这一水平之下。

  研究进展

  高质量β-Ga2O3晶体

  一直以来,中国在β-Ga2O3晶体材料和器件方面的研究相对落后,尤其是功率器件的研究很少,关键原因是受限于大尺寸、高质量β-Ga2O3晶体的获得。

  2017年8月,我国同济大学物理科学与工程学院唐慧丽副教授、徐军教授团队采用自主知识产权的导模法技术,成功制备出2英寸高质量β-Ga2O3单晶。获得的高质量β-Ga2O3单晶,X射线双晶摇摆曲线半高宽27″,位错密度3.2×104cm-2,表面粗糙度<5A,该项研究成果将有力推动我国氧化镓基电力电子器件和探测器件的发展。



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭