新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 运算放大器和反馈电阻的动态特性分析

运算放大器和反馈电阻的动态特性分析

作者:时间:2018-11-12来源:网络收藏

  只要变化的参数(图2中的fT或τT)同时出现在多项式的s2和s项中,图中就会显示极点移动的位置或轨迹。放大器在无限fT时阻尼最小,当τT → 0s时极点位置在极限值:

本文引用地址:http://www.eepw.com.cn/article/201811/394174.htm

  在jxω轴上有两个值,其响应是稳定的(而不是振荡的):原点和±jx ∞处。两者都是无限的,(Zero(0)是无穷小的)。当τT → 0s时,极点多项式的s中的两个项接近零,留下恒定的1项,并且不受频率影响。在极限情况下,极点位于jxω轴上,ζ= 0(振荡器的条件),但在s的有限值处,它们的幅度为零。极点频率很高,阻尼不再重要。它们与fi相距太远而不会影响环路动态。这是理想的条件。因此,我们可以得出结论,对于非常慢或非常快的,极点是充分分离的,以使响应稳定。只有在fT的范围内,这时和Ci极点太靠近,阻尼在足够低的极点频率fn处过度降低,同时放大器中发生幅度相当大的振荡。

  再回到跨阻放大器,如果运算放大器几乎是理想的,也就是说,速度快到τT ≈ 0s,则极点多项式大约为1。对于足够快的运算放大器,fT >> fi,而且极点分开,就会有稳定的环路。为了提供额外的阻尼,使运算放大器fT(和环路增益)不会过低,电容器Cf需要通过RR分流。然后用包含Cf的电路代数计算:

  极点对参数为:

  Cf的作用是在二次系数中将τf加到τi,更重要的是加到线性项中的τT,这会增加阻尼。因为τi = τT,所以:

  对于临界阻尼,设π = 1;那么τT = (3 + 2 x √2) x τi ≈ 3.414 x τi且τn ≈ 1.848 x τi。如果没有Cf(Cf = 0pF),如先前所计算的,τT = 4 x τi。若有Cf,在相同的动态响应下,运算放大器可以更快,即具有更高的G0并实现更高的精度。

  频率响应幅度和相位是:

  对于理想的快速运算放大器(τT = 0s)并且当Cf = Ci(τf = τi)时,在频率fg(或ωg)处具有响应:

  如果fi = 10 x fg,那么幅度误差≈0.5%。因为fi = 10 x fg,相位误差 ≈ 6o。相位误差对频率效应比对幅度误差更敏感。这在阻抗计电路设计中很重要,有时在光电探测放大器中也很重要,因为光电探测波形要与一些其它波形同步。

  避免大的电路

  对于一些带跨阻放大器的Z-meter(ZM)设计,RR要足够大,即10MΩ或更大。当RR变得非常大时,要得到期望的阻尼,分流Cf必须很小,并且电阻分流寄生电容还可能过大。为了避免这个问题,可以使用以下电路代替。

  图3:使用该电路避免电阻分流寄生电容过大。

  要让运算放大器成为高增益单极运算放大器,G ≈ –1/s x τT(参见本系列文章第一部分有关G的推导)。反馈分频器传递函数是:

  且τf = RR x Cf。当电路用Rp = R1||R2求解时:

  理想运算放大器(τT = 0s)的Zm降低到:

  对于Rp = 0Ω,跨阻进一步降低至:

  如果在输出与RR和Cf之间插入快速×1缓冲放大器,则R1和R2分压器输出电阻不需要太小(Rp << RR)。那么当Rp = 0Ω且运算放大器具有τT时:

  该电路与没有输出分频器的情况有两个不同:RR和τT都有效地增加了1/Hdiv。

  结语

  通过本文两部分的阐述可以看出,即使是只有两个器件的简单电路也可能涉及复杂的动态推导。设计人员有时会避免使用这些推导来减少数学计算的麻烦,但是使用这些公式可以更好地了解给定电路在各种条件下的性能表现。我们介绍的跨阻放大器分析可为这样的电路设计提供一个模板,并提供如何分析放大器动态特性的指导性示例。

  不要因为立方或更高次多项式而拒绝使用s域代数来解决电路动态问题。我们在本实例中遇到了一个立方项,但没必要去解它,因为通过简化可将多项式降为二次方程,方便以后的分析计算。这种情况很常见,因为电路在设计阶段常常被模块化,它们要么彼此隔离,要么通过受控端口阻抗进行受控交互。设计中可以应用模板方案,但通常限于s域中的二次方程。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭