新闻中心

EEPW首页 > 嵌入式系统 > 业界动态 > GPU、FPGA、ASIC、TPU四大AI芯片“争奇斗艳”

GPU、FPGA、ASIC、TPU四大AI芯片“争奇斗艳”

作者:时间:2018-09-29来源:网络收藏

  AI芯片是当前科技产业和社会关注的热点,也是AI技术发展过程中不可逾越的关键一环,不管有什么好的AI算法,要想最终应用,就必然要通过芯片实现。

本文引用地址:http://www.eepw.com.cn/article/201809/392496.htm

  谈AI芯片,就必须先对AI下一个定义。在莱迪斯半导体亚太区资深事业发展经理陈英仁看来,“AI神经网络”不是简单定义为某类产品,而是一个新的设计方法,“传统的一些算法,是照规则、照逻辑的,神经网络是用数据训练出来的结果。”那今天小编就给大家剖析四大AI芯片。

  四大AI芯片

  :又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。其用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。

  在当前的人工智能芯片领域,的应用领域不容小觑。据数据显示,在2008至2015年期间,除了2008年市场规模稍有下降,其余年份全球独立显卡的出货量和销售额都呈现出明显的上升趋势,并且在2012至2015年有加速上升的表现。

  :即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。作为专用集成电路()领域中的一种半定制电路而出现的芯片,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。系统设计师可以根据需要通过可编辑的连接把内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。

  目前,国内有许多创业企业,自动加入阵营,提供基于FPGA的解决方案。比如源于清华大学的深鉴科技,专注于深度学习处理器与编译器技术,深鉴科技研发了一种名为“深度压缩”的技术,它不仅可以将神经网络压缩数十倍而不影响准确度,还可以使用“片上存储”来存储深度学习算法模型,减少内存读取,大幅度减少功耗。

  :即专用集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。目前用CPLD(复杂可编程逻辑器件)和FPGA(现场可编程逻辑阵列)来进行设计是最为流行的方式之一,它们的共性是都具有用户现场可编程特性,都支持边界扫描技术,但两者在集成度、速度以及编程方式上具有各自的特点。

  ASIC的特点是面向特定用户的需求,品种多、批量少,要求设计和生产周期短,它作为集成电路技术与特定用户的整机或系统技术紧密结合的产物,与通用集成电路相比具有体积更小、重量更轻、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。

  TPU(Tensor Processing Unit):是谷歌研发的一种神经网络训练的处理器,主要用于深度学习、AI运算。TPU具有像GPU和CPU一样的编程,以及一套CISC指令集。作为机器学习处理器,不仅仅支持某一种神经网络,还支持卷积神经网络、LSTM、全连接网络等多种。TPU采用低精度(8位)计算,以降低每步操作使用的晶体管数量。

  虽然降低精度对于深度学习的准确度影响很小,但却可以大幅降低功耗、加快运算速度。同时,TPU使用了脉动阵列的设计,用来优化矩阵乘法与卷积运算,减少I/O操作。此外,TPU还采用了更大的片上内存,以此减少对DRAM的访问,从而更大程度地提升性能。



关键词: GPU FPGA ASIC

评论

技术专区

关闭