新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > FPGA重点知识13条,助你构建完整“逻辑观”之二

FPGA重点知识13条,助你构建完整“逻辑观”之二

作者:时间:2018-02-11来源:网络收藏

  8、系统

本文引用地址:http://www.eepw.com.cn/article/201802/375719.htm

  1. 的全局是什么?

  的全局应该是从晶振分出来的,最原始的频率。其他需要的各种频率都是在这个基础上利用PLL或者其他分频手段得到的。

  2. 全局时钟和BUFG:

  BUFG,输入为固定管脚,输出为H型全铜全局高速网络,这样抖动和到任意触发器的延时差最小,这个也就是FPGA做同步设计可以不需要做后仿真的原因。

  全局时钟:今天我们从另一个角度来看一下时钟的概念:时钟是D触发器的重要组成部分,一个有效边沿使得D触发器进行一次工作。而更多的时候,D触发器保持住上次的值。对于D触发器来说,可以将输入信号和时钟作比较。也许你会问,这么比较有什么意义。首先看我们比较得出什么东西:

  翻转率:R=Dr/Crx100%

  就是D触发器改变一次值与时钟有效沿个数的比值。

  举例:你写了一个来一个时钟有效沿就取一次反的电路,那么他的翻转率就是100%,翻转率和你的FPGA的功率有很大关系,翻转率越高,FPGA功率越高。

  3. 全局时钟不够用是什么意思?

  因为全局时钟需要驱动很多模块,所以全局时钟引脚需要有很大的驱动能力,FPGA一般都有一些专门的引脚用于作为全局时钟用,他们的驱动能力比较强。但是如果这些引脚用完了,就只能用一般的引脚了,而他们的驱动能力不强,有可能不能满足你的时序要求。(驱动能力小的,产生的延迟会大一些)

  理论上,FPGA的任意一个管脚都可以作为时钟输入端口,但是FPGA专门设计了全局时钟,全局时钟总线是一条专用总线,到达片内各部分触发器的时间最短,所以用全局时钟芯片工作最可靠,但是如果你设计的时候时钟太多,FPGA上的全局时钟管脚用完了就出现不够用的情况。

  4. 什么是第二全局时钟?

  比如我有一个同步使能信号,连接到FPGA内部80%的资源(但不是时钟),这个时候,你的信号走线到达各个D触发器的延迟差很大,或者翻转率比较大的时候(>40%),这个时候你就需要使用第二全局时钟资源。

  第二全局时钟资源的驱动能力和时钟抖动延迟等指标仅次于全局时钟信号。第二全局时钟资源其实是通过片内的高速行列总线来实现的,而不像全局时钟总线是一条专用总线。第二全局时钟总线是通过软件布线得到的,所以硬指标肯定是拼不过全局时钟总线。特别是当你在已经有80%以上的布线率的情况下,可能会出现约束第二全局时钟资源失败的情况。

  5.CCLK:

  CCLK:FPGA同步配置时钟。如果配置模式为主模式,则该时钟由FPGA器件生成,并输出;如果配置模式为从模式,则该时钟由外部提供;

  当所配置的数据存放在PROM中,即通过PROM来配置器件时,必须选择CCLK时钟;

  USER CLOCK:用户定义的配置时钟信号,该配置时钟目前很少采用;

  JTAG CLOCK:JTAG模式的配置时钟,该时钟提供给内部的JTAG控制逻辑。

  默认值为:CCLK

  6. CCLK是怎么产生的:

  CCLK的产生根据配置模式不同而不同,如果设置为Master模式,则由内部的震荡电路产生,作为外部ROM的工作时钟,默认为6MHZ,可通过配置选项设置;如果设置为Slave模式,则由计算机(或其他下载设备)提供,作为芯片内部下载电路的工作时钟;在JTAG模式情况下,CCLK不输出,此时芯片内部下载电路时钟由内部震荡电路提供,TCK仅用作边界扫描相关电路时钟。

  补充:FPGA的主配置模式中,CCLK信号是如何产生的?

  CCLK是由FPGA内部一个晶振电路产生的,同时ISE的软件在生成BIT流文件时,有个CCLK CONFIG选项,这个选项只有在时钟为CCLK时才可以起作用,可以在4-60MHz选择,可以控制CCLK的频率。

  在主从模式配置,配置数据的前60个字节导入FPGA之前,CCLK一直是2.5MHz,接下来由于前60个配置字节的作用,CCLK改为CONFIG设定的频率,直到结束,一般CONFIG默认的频率是4MHz.

  7. FPGA中全局时钟怎么用啊?是把时钟接到FPGA的全局时钟输入引脚后,就起到全局时钟的作用了,还是在编译时需要制定某个时钟为全局时钟阿?

  其实全局时钟的使用关键在你的代码… 如果你的代码中只用了一个时钟作为所有的或者大部分触发器的时钟,编译器自然会把它编译为全局时钟。当然硬件连接上还是用全局时钟引脚较好,尤其是带PLL的,不是所有的全局时钟脚都能用PLL。

  无沦是用离散逻辑、可编程逻辑,还是用全定制硅器件实现的任何数字设计,为了成功地操作,可靠的时钟是非常关键的。设计不良的时钟在极限的温度、电压或制造工艺的偏差情况下将导致错误的行为,并且调试困难、花销很大。 在设计PLD/FPGA时通常采用几种时钟类型。时钟可分为如下四种类型:全局时钟、门控时钟、多级逻辑时钟和波动式时钟。多时钟系统能够包括上述四种时钟类型的任意组合。

  1.全局时钟

  对于一个设计项目来说,全局时钟(或同步时钟)是最简单和最可预测的时钟。在PLD/FPGA设计中最好的时钟方案是:由专用的全局时钟输入引脚驱动的单个主时钟去钟控设计项目中的每一个触发器。只要可能就应尽量在设计项目中采用全局时钟。PLD/FPGA都具有专门的全局时钟引脚,它直接连到器件中的每一个寄存器。这种全局时钟提供器件中最短的时钟到输出的延时。

  图1 示出全局时钟的实例。图1 定时波形示出触发器的数据输入D[1..3]应遵守建立时间和保持时间的约束条件。建立和保持时间的数值在PLD数据手册中给出,也可用软件的定时分析器计算出来。如果在应用中不能满足建立和保持时间的要求,则必须用时钟同步输入信号(参看下一章“异步输入”)。


  图1 全局时钟

  (最好的方法是用全局时钟引脚去钟控PLD内的每一个寄存器,于是数据只要遵守相对时钟的建立时间tsu和保持时间th)

  2.门控时钟

  在许多应用中,整个设计项目都采用外部的全局时钟是不可能或不实际的。PLD具有乘积项逻辑阵列时钟(即时钟是由逻辑产生的),允许任意函数单独地钟控各个触发器。然而,当你用阵列时钟时,应仔细地分析时钟函数,以避免毛刺。

  通常用阵列时钟构成门控时钟。门控时钟常常同微处理器接口有关,用地址线去控制写脉冲。然而,每当用组合函数钟控触发器时,通常都存在着门控时钟。如果符合下述条件,门控时钟可以象全局时钟一样可靠地工作:

  1.驱动时钟的逻辑必须只包含一个“与”门或一个“或”门。如果采用任何附加逻在某些工作状态下,会出现竞争产生的毛刺。

  2.逻辑门的一个输入作为实际的时钟,而该逻辑门的所有其它输入必须当成地址或控制线,它们遵守相对于时钟的建立和保持时间的约束。

  图2和图3 是可靠的门控时钟的实例。在 图2 中,用一个“与”门产生门控时钟,在 图3 中,用一个“或”门产生门控时钟。在这两个实例中,引脚nWR和nWE考虑为时钟引脚,引脚ADD[o..3]是地址引脚,两个触发器的数据是信号D[1..n]经随机逻辑产生的。


  图2 “与”门门控时钟


  图3 “或”门门控时钟

  图2和图3 的波形图显示出有关的建立时间和保持时间的要求。这两个设计项目的地址线必须在时钟保持有效的整个期间内保持稳定(nWR和nWE是低电平有效)。如果地址线在规定的时间内未保持稳定,则在时钟上会出现毛刺,造成触发器发生错误的状态变化。另一方面,数据引脚D[1..n]只要求在nWR和nWE的有效边沿处满足标准的建立和保持时间的规定。

  我们往往可以将门控时钟转换成全局时钟以改善设计项目的可靠性。图4 示出如何用全局时钟重新设计 图2 的电路。地址线在控制D触发器的使能输入,许多PLD设计软件,如MAX+PLUSII软件都提供这种带使能端的D触发器。当ENA为高电平时,D输入端的值被钟控到触发器中:当ENA为低电平时,维持现在的状态。


  图4 “与”门门控时钟转化成全局时钟

  图4 中重新设计的电路的定时波形表明地址线不需要在nWR有效的整个期间内保持稳定;而只要求它们和数据引脚一样符合同样的建立和保持时间,这样对地址线的要求就少很多。


上一页 1 2 3 4 下一页

关键词: FPGA 时钟

评论


相关推荐

技术专区

关闭