新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 重温经典排序思想--C语言常用排序全解

重温经典排序思想--C语言常用排序全解

作者:时间:2016-12-08来源:网络收藏

  /*

本文引用地址:http://www.eepw.com.cn/article/201612/341312.htm

  ===============================================

  作者:rerli

  时间:2003-12-15

  目的:重温经典思想,并用指针实现算法

  ================================================

  */

  /*

  =============================================================================

  相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):

  1、稳定和非稳定排序

  简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就

  说这种排序方法是稳定的。反之,就是非稳定的。

  比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,

  则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,

  a2,a3,a5就不是稳定的了。

  2、内排序和外排序

  在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;

  在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

  3、算法的时间复杂度和空间复杂度

  所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

  一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

  ================================================================================

  */

  /*

  ================================================

  功能:选择排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

  然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环

  到倒数第二个数和最后一个数比较为止。

  选择排序是不稳定的。算法复杂度O(n2)--[n的平方]

  =====================================================

  */

  void select_sort(int *x, int n)

  {

  int i, j, min, t;

  for (i=0; i {

  min = i; /*假设当前下标为i的数最小,比较后再调整*/

  for (j=i+1; j {

  if (*(x+j) < *(x+min))

  {

  min = j; /*如果后面的数比前面的小,则记下它的下标*/

  }

  }

  if (min != i) /*如果min在循环中改变了,就需要交换数据*/

  {

  t = *(x+i);

  *(x+i) = *(x+min);

  *(x+min) = t;

  }

  }

  }

  /*

  ================================================

  功能:直接插入排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排

  好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

  也是排好顺序的。如此反复循环,直到全部排好顺序。

  直接插入排序是稳定的。算法时间复杂度O(n2)--[n的平方]

  =====================================================

  */

  void insert_sort(int *x, int n)

  {

  int i, j, t;

  for (i=1; i {

  /*

  暂存下标为i的数。注意:下标从1开始,原因就是开始时

  第一个数即下标为0的数,前面没有任何数,单单一个,认为

  它是排好顺序的。

  */

  t=*(x+i);

  for (j=i-1; j>=0 && t<*(x+j); j--) /*注意:j=i-1,j--,这里就是下标为i的数,在它前面有序列中找插入位置。*/

  {

  *(x+j+1) = *(x+j); /*如果满足条件就往后挪。最坏的情况就是t比下标为0的数都小,它要放在最前面,j==-1,退出循环*/

  }

  *(x+j+1) = t; /*找到下标为i的数的放置位置*/

  }

  }

  /*

  ================================================

  功能:冒泡排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  在要排序的一组数中,对当前还未排好序的范围内的全部数,自上

  而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较

  小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要

  求相反时,就将它们互换。

  下面是一种改进的冒泡算法,它记录了每一遍扫描后最后下沉数的

  位置k,这样可以减少外层循环扫描的次数。

  冒泡排序是稳定的。算法时间复杂度O(n2)--[n的平方]

  =====================================================

  */

  void bubble_sort(int *x, int n)

  {

  int j, k, h, t;

  for (h=n-1; h>0; h=k) /*循环到没有比较范围*/

  {

  for (j=0, k=0; j {

  if (*(x+j) > *(x+j+1)) /*大的放在后面,小的放到前面*/

  {

  t = *(x+j);

  *(x+j) = *(x+j+1);

  *(x+j+1) = t; /*完成交换*/

  k = j; /*保存最后下沉的位置。这样k后面的都是排序排好了的。*/

  }

  }

  }

  }

  /*

  ================================================

  功能:希尔排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,

  并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为

  增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除

  多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现

  了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中

  记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量

  对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成

  一组,排序完成。

  下面的函数是一个希尔排序算法的一个实现,初次取序列的一半为增量,

  以后每次减半,直到增量为1。

  希尔排序是不稳定的。

  =====================================================

  */

  void shell_sort(int *x, int n)

  {

  int h, j, k, t;

  for (h=n/2; h>0; h=h/2) /*控制增量*/

  {

  for (j=h; j {

  t = *(x+j);

  for (k=j-h; (k>=0 && t<*(x+k)); k-=h)

  {

  *(x+k+h) = *(x+k);

  }

  *(x+k+h) = t;

  }

  }

  }

  /*

  ================================================

  功能:快速排序

  输入:数组名称(也就是数组首地址)、数组中起止元素的下标

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟

  扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次

  扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只

  减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)

  的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理

  它左右两边的数,直到基准点的左右只有一个元素为止。它是由

  C.A.R.Hoare于1962年提出的。

  显然快速排序可以用递归实现,当然也可以用栈化解递归实现。下面的

  函数是用递归实现的,有兴趣的朋友可以改成非递归的。

  快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n2)

  =====================================================

  */

  void quick_sort(int *x, int low, int high)

  {

  int i, j, t;

  if (low < high) /*要排序的元素起止下标,保证小的放在左边,大的放在右边。这里以下标为low的元素为基准点*/

  {

  i = low;

  j = high;

  t = *(x+low); /*暂存基准点的数*/

  while (i {

  while (it) /*在右边的只要比基准点大仍放在右边*/

  {

  j--; /*前移一个位置*/

  }

  if (i {

  *(x+i) = *(x+j); /*上面的循环退出:即出现比基准点小的数,替换基准点的数*/

  i++; /*后移一个位置,并以此为基准点*/

  }

  while (i {

  i++; /*后移一个位置*/

  }

  if (i {

  *(x+j) = *(x+i); /*上面的循环退出:即出现比基准点大的数,放到右边*/

  j--; /*前移一个位置*/

  }

  }

  *(x+i) = t; /*一遍扫描完后,放到适当位置*/

  quick_sort(x,low,i-1); /*对基准点左边的数再执行快速排序*/

  quick_sort(x,i+1,high); /*对基准点右边的数再执行快速排序*/

  }

  }

  /*

  ================================================

  功能:堆排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  ================================================

  */

  /*

  ====================================================

  算法思想简单描述:

  堆排序是一种树形选择排序,是对直接选择排序的有效改进。

  堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当

  满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)

  时称之为堆。在这里只讨论满足前者条件的堆。

  由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项。完全二叉树可以

  很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

  初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,

  使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点

  交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点

  的堆,并对它们作交换,最后得到有n个节点的有序序列。

  从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素

  交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数

  实现排序的函数。

  堆排序是不稳定的。算法时间复杂度O(nlog2n)。

  */

  /*

  功能:渗透建堆

  输入:数组名称(也就是数组首地址)、参与建堆元素的个数、从第几个元素开始

  */

  void sift(int *x, int n, int s)

  {

  int t, k, j;

  t = *(x+s); /*暂存开始元素*/

  k = s; /*开始元素下标*/

  j = 2*k + 1; /*右子树元素下标*/

  while (j {

  if (j {

  j++;

  }

  if (t<*(x+j)) /*调整*/

  {

  *(x+k) = *(x+j);

  k = j; /*调整后,开始元素也随之调整*/

  j = 2*k + 1;

  }

  else /*没有需要调整了,已经是个堆了,退出循环。*/

  {

  break;

  }

  }

  *(x+k) = t; /*开始元素放到它正确位置*/

  }

  /*

  功能:堆排序

  输入:数组名称(也就是数组首地址)、数组中元素个数

  */

  void heap_sort(int *x, int n)

  {

  int i, k, t;

  int *p;

  for (i=n/2-1; i>=0; i--)

  {

  sift(x,n,i); /*初始建堆*/

  }

  for (k=n-1; k>=1; k--)

  {

  t = *(x+0); /*堆顶放到最后*/

  *(x+0) = *(x+k);

  *(x+k) = t;

  sift(x,k,0); /*剩下的数再建堆*/

  }

  }

  void main()

  {

  #define MAX 4

  int *p, i, a[MAX];

  /*录入测试数据*/

  p = a;

  printf("Input %d number for sorting :\n",MAX);

  for (i=0; i {

  scanf("%d",p++);

  }

  printf("\n");

  /*测试选择排序*/

  p = a;

  select_sort(p,MAX);

  /**/

  /*测试直接插入排序*/

  /*

  p = a;

  insert_sort(p,MAX);

  */

  /*测试冒泡排序*/

  /*

  p = a;

  insert_sort(p,MAX);

  */

  /*测试快速排序*/

  /*

  p = a;

  quick_sort(p,0,MAX-1);

  */

  /*测试堆排序*/

  /*

  p = a;

  heap_sort(p,MAX);

  */

  for (p=a, i=0; i {

  printf("%d ",*p++);

  }

  printf("\n");

  system("pause");

  }



关键词: C语言 排序

评论


相关推荐

技术专区

关闭