新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 深挖智能汽车设计要素,你知多少?

深挖智能汽车设计要素,你知多少?

作者:时间:2016-10-22来源:网络收藏

在图9中可发现,PXI-4110可程序化DC电源供应器,即可供应DC偏压信号。虽然多款现成的电源供应器(其中亦包含价位较低的电源供应器)均可用于此应用中,我们还是使用PXI-4110以简化作业。同样的,现有常见的偏压器(Bias tee)可进行最高1.58GHz的作业,而此处所使用的偏压器购自于www.minicircuits.com.

方法2:以接收器供电至主动式天线

供电至主动式天线的第二个方法,即是透过天线本身的接收器。大多数的现成接收器,均使用单一端口供电至主动式天线,且此端口亦透过合适的DC信号达到偏压。若将主动式GPS接收器整合分裂器(Splitter)与DC阻绝器(Blocker),即可供电至主动式LNA,并仅记录GPS接收器所获得的信号。下图即为正确的连结方式:

图10.透过DC阻绝器(Blocker),将可记录并分析GPS信号

如图10所示,GPS接收器的DC偏压即用以供电至LNA.请注意,由于当进行记录时,即可观察接收器的相关特性,如速度与精确度衰减(Dilution)情形,因此方法2特别适用于驱动程序测试。

串联式(Noise figure)噪声系数计算

若要计算已记录GPS信号的总噪声量,只要找出整体RF前端的噪声系数即可。就一般情况来说,整组系统的噪声系数,往往受到系统的第一组放大器所影响。在所有RF组件或系统中,噪声系数均可视为SNRin与SNRout(参阅:测量技术的噪声系数)的比例。当记录GPS信号时,必须先找出整体RF前端的噪声系数。

当执行串联式噪声系数计算时,必须先行针对每笔噪声系数与增益,将之转换为线性等式;即所谓的“噪声因子(Noise factor)”。当以串联的RF组件计算系统的噪声系数时,即可先找出系统的噪声因子,并接着转换为噪声系数。因此系统的噪声系数必须使用下列等式计算之:

等式2.串联式RF放大器的噪声系数计算作业[3]

请注意,由于噪声因子(nf)与增益(g)属于线性关系而非对数(Logarithmic)关系,因此以小写表示之。下列即为增益与噪声系数,从线性转换为对数(反之亦然)的等式:

等式3到等式6.增益与噪声系数的线性/对数转换[3]

内建低噪声放大器(LNA)的主动式GPS天线,一般均提供30dB的增益,且其噪声系数约为1.5dB.在仪控记录作业的第二阶段,则由NIPXI-5690提供30dB的附加增益。由于其噪声系数较高(5dB),因此第二组放大器仅将产生极小的噪声至系统中。在教学实作中,可针对记录仪控作业的完整RF前端,使用等式2计算其噪声因子。增益与噪声系数值即如下图所示:

图11.RF前端的首2组组件噪声系数与因子。

根据上列计算,即可找出接收器的整体噪声因子:

等式7.RF记录系统的串联噪声系数

若要将噪声因子转换为噪声系数(单位为dB),则可套用等式3以获得下列结果:

等式8.第一组LNA的噪声系数将影响接收器的噪声系数

如等式8所示,第一组LNA(1.5dB)的噪声系数,将影响整组测量系统的噪声系数。透过VSA的相关设定,可让仪器的噪声水平(Noise floor)低于输入激发的噪声水平,因此用户所进行的记录作业,将仅对无线信号造成1.507dB的噪声。

对GPS接收器发出信号

由于多款接收器可使用合适的软件,让用户呈现如经度与纬度的信息,因此需要更标准化的方式进行自动测量作业。还好,目前有多款接收器均可透过众所周知的NMEA-183协议,以设定对PXI控制器发出信号。如此一来,接收器将可透过序列或USB连接线,连续传送相关指令。在NILabVIEW中,所有的指令均可转换语法,以回传卫星与定位信息。NMEA-183协议可支持6种基本指令,并各自代表专属的信息。这些指令即如下表所示

图12.基本NMEA-183指令概述

以实际测试需要而言,GGA、GSA,与GSV指令应最为实用。更值得一提的是,GSA指令的信息可用于了解接收器是否可达到定位作业需要,或可用于首次定位时间(Time To First Fix,TTFF)测量。当执行高敏感性的测量时,实际可针对所追踪的卫星,使用GSV指令回传C/N(Carrier-to-noise)比。

虽然无法于此详细说明MNEA-183协议,但可至其他网站寻找所有的指令信息,如:http://www.gpsinformation.org/dale/nmea.htm#RMC.在LabVIEW中,这些指令可透过NI-VISA驱动程序转换其语法。

图13.使用NMEA-183协议的LabVIEW范例

GPS测量技术

目前有多种测量作业可为GPS接收器的效能进行特性描述(Characterization),其中亦有数种常见测量可套用至所有的GPS接收器中。此章节将说明执行测量的理论与实作,如:灵敏度、首次定位时间(TTFF)、定位精确度/可重复性,与定位追踪不定性(Uncertainty)。应注意的是,还有许多不同的方式可检验定位精确度,并执行接收器追踪功能的测试。虽然接着将说明多种基本方式,但仍无法概括所有。

灵敏度(Sensitivity)测量作业介绍

灵敏度为GPS接收器功能的最重要测量作业之一。事实上,对多款已量产的GPS接收器来说,仅限为最后生产测试所执行的RF测量而已。若深入来说,灵敏度测量即为“接收器可追踪并接收上方卫星定位信息的最低卫星功率强度”。一般人均认为,GPS接收器必须串联多组LNA以达极高的增益,才能将信号放大到合适的功率强度。事实上,虽然LNA可提升信号功率,亦可能降低SNR.因此,当GPS信号的RF功率强度降低时,SNR也将跟着降低,最后让接收器无法追踪卫星。



关键词: GPS GPS接收器测试

评论


相关推荐

技术专区

关闭