关 闭

新闻中心

EEPW首页 > 工控自动化 > 业界动态 > 科学家开发仿真软件模拟激光与物质的相互作用

科学家开发仿真软件模拟激光与物质的相互作用

作者:时间:2016-01-29来源:中国光学期刊网收藏

  他们的温度区间研究包含几个关键温度点:首先是理解材料在温度达到玻璃转化温度 (1,300 K) 时的热弹性响应, 此时,熔融石英的弹性响应会突然增加,流阻降低。随后,他们研究了当温度介于玻璃转化温度和蒸发点 (约 2,200K) 时,玻璃在粘性流动下的分子弛豫。最终的目标是分析当温度介于 2,200 和 3,400 K 时,材料的蒸发和再沉积。

本文引用地址:http://www.eepw.com.cn/article/201601/286461.htm

  为了探讨用于修复损坏的特定技术,Matthews 转向 COMSOL Multiphysics? 软件寻求帮助。“我决定使用 COMSOL 来更好地了解到底发生了什么。” Matthews 说道:“软件包含了所有必需的物理场,因此我可以轻松尝试我的想法,省去了从头开始编写代码所需花费的时间和精力。”

  根据 Matthews 的说法,COMSOL 在帮助他们理解激光与熔融石英之间的相互作用,以及完善特定修复方法方面发挥了巨大的作用。“高功率激光系统对表面粗糙度的容许度较低。要实现如此高标准的平坦度,需要进行多方面的仿真。”他说道。他所进行的仿真包括流体中的传热、化学反应、结构力学、传质,以及流体流动。

  

 

  图 2. 仿真结果显示了激光加热玻璃的马朗戈尼流。当激光加热在依赖于温度的表面张力中造成梯度时,就会使材料快速向外流动,形成看起来很像波纹或层级的形状。

  三 红外脉冲的激光微成形

  虽然首先使用了慢速退火这一简单的方法来缓解的损伤(见图 1 上部),实验和仿真都显示当放置于激光束中的元件表面包含由热毛细流或马朗戈尼剪切应力引发的表面波纹时,会造成我们不希望的光调制。图 2 显示了由于马朗戈尼剪切应力造成的激光诱导温度剖面和材料位移仿真。

  为了消除该效应,Matthews 和他的同事们探讨了使用更短激光脉冲(几十微秒相对于每分钟)来精确“切削”材料形状,当置于激光系统中时,切削后的形状受到下游光调制的影响更小。在快速烧蚀缓解 (RAM) 方法中,使用红外激光以略高于蒸发点的温度加热基底, 这将精确地移除极少量的材料,并生成一个光滑、无裂隙的表面。材料的纳米级烧蚀将会重复上千次,甚至几百万次,最终会形成一个光滑的圆锥形坑,该形状是“光学上良性”的,不会造成下游光调制(见图 1 下部)。

  “尽管使用红外激光来加工石英光学元件的历史很长。”Matthews 说道:“人们却很少尝试通过理解其中的能量耦合和热流来优化这一工艺。通过在 COMSOL 中仿真大范围的激光参数和材料属性,我们能够回答许多这类问题。”

  对烧蚀区域温度和材料行为的仿真 结果较好地契合了团队的实验结果。“我们的研究成果将具有深远的影响。”Matthews 说道:“除了能用于修复高功率脉冲激光系统中的损伤,还能用于几乎所有需要激光抛光、退火,以及石英表面1微成形的系统。”

  四 用于大型修复的激光化学气相沉积

  LLNL 团队研究的第三种用于修复受损光学元件的方法是激光-化学气相沉积(L-CVD)。在此增材工艺中,石英前体气体通过喷嘴“流到”表面上。利用一个窗口(见图 3)将聚焦的 CO2 激光束耦合到喷嘴上,分解前体并在受损坑处沉积固体 Sio2 玻璃。对于带有较大缺陷且较难使用红外微成形或其他削除方法修复的光学元件表面,他们正在研究使用 L-CVD 来对表面进行纳米精度的修复。最终,将可能完全恢复这些光学元件的性能。

  

 

  图 3. 用于激光 CVD 工艺的光学耦合气体喷嘴示意图,气体通过侧向端口进入,红外激光通过 ZnSe 窗口沿轴向进入。

  “通过仿真,我们实验了激光束强度、位置和脉冲时长会如何影响沉积在光学元件上的材料数量。” Matthews 解释说。仿真可以确定石英分解时的浓度和流动,以及沉积材料的位置(见图 4)。



评论


相关推荐

技术专区

关闭