新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 利用热分析预测IC的瞬态效应并避免过热

利用热分析预测IC的瞬态效应并避免过热

作者:时间:2010-01-19来源:网络收藏

  我们可利用以上得出的方程式和线性LED驱动器(例如MAX16828/MAX16815)验证RC仿真模型的实际应用。这些芯片工作在最高40V电压,几乎不需要外部元件,MAX16828能够为一串LED供电,最大电流可达200mA (图6)。MAX16815与MAX16828引脚兼容,功能相似,但最大输出电流可达100mA,而非200mA。两款LED驱动器都适合于汽车应用,例如,用于侧灯、汽车尾灯、背光和指示灯。如果内部MOSFET需要承受较大电流,而且具有较大压差时,MAX16828将需要耗散相当可观的热量(LED串的正向电压较低时,MOSFET会发生这种情况)。RSENSE两端的电压调节在200mV ±3.5%,该电阻用于设置LED电流。芯片的DIM输入为LED提供较宽范围的PWM调光,因为它能够承受高压,可以直接将其连接到IN引脚。为了直接显示管芯温度,我们对连接在DIM和IN引脚之间内部ESD二极管的正向偏压进行测量。该二极管偏置在大约100μA,其正向电压变化率为2mV/°K (这点可通过温控炉对器件加热进行验证),实验设置如图7所示。5V电源和56kΩ电阻提供100μA偏置电流,为ESD二极管提供正向偏置。驱动器设置为可向LED提供200mA的输出电流。MAX16815/MAX16828 HBLED驱动器的典型应用电路


图6. MAX16815/MAX16828 HBLED驱动器的典型应用电路。
图中所示测试装置采用片上ESD二极管测量管芯的瞬时温度
图7. 图中所示测试装置采用片上ESD二极管测量管芯的瞬时温度。*EP表示裸焊盘。

  这种状态下,元件承载大量电流,ESD二极管测量处于测量通路。因此,由于焊接线和内部金属电阻的影响,会产生一定误差。根据内部布局和焊接线长度计算,估计最差情况下的寄生电阻为50mΩ。200mA下,该寄生电阻会在二极管读数上产生大约±10mV (最大)的误差,对应的温度测量精度误差大于±5°C。此外,管芯ESD二极管放置在靠近片上功率MOSFET和热保护电路处。这种配置可使二极管更准确地表示该区域的温度。

  系统定义1

  接下来的部分介绍如何利用测试装置,采集代表瞬时热特性的二极管电压,用于上述式7和式21的系统定义方程式。为了计算kA和θJA (代入式11),采用热风枪加热芯片。因为我们并不希望芯片内部产生热量,所以将芯片断电。利用热风枪加热元件会使封装、管芯的温度上升。可利用示波器测量二极管的电压,以监测管芯的温度变化(图 8)。

  当芯片加热时,二极管电压按照指数规律迅速下降,与公式预测结果一致。接近曲线中间位置时,关闭热枪,使封装和管芯开始冷却。二极管电压又按照指数规律上升。我们并不确切知道有多少热量从热风枪传递到芯片。因此,为了消除该未知数,我们首先将式28调整为仅拟合曲线(图8)的上升部分(冷却)。这种曲线拟合使我们能够估算kA的最佳值。冷却期间没有热功率传递至封装,封装仅仅进行冷却,P = 0。因此,式28可简化为:

式28可简化为(式34)

  我们已知VDA (室温下的初始测量值为643mV)和VDi (t = 0时的参考读数)值。为了确定KA,我们必须调整方程式,使其包括上升曲线的一对读数,将得到kA = -0.0175。图9所示为采用上述kA值时的读数(二极管电压单位为mV,与以秒为单位的时间的对应关系)和式34的波形。

 该二极管电压瞬态值包括表示外部热风枪加热(下降曲线)和移开热风枪后冷却(上升曲线)的指数曲线
图8. 该二极管电压值包括表示外部热风枪加热(下降曲线)和移开热风枪后冷却(上升曲线)的指数曲线。式34



图9. 式34,拟合至一对二极管电压测量值,非常接近芯片经过热风枪加热后再冷却的二极管测量值。

正如我们在图9中看到的那样,式34与kA = -0.0175时的测量数据非常接近。为了验证我们公式的正确性,我们尝试利用针对kA测定的值拟合公式28的下降曲线,方程式精确拟合(图10)。因此,我们看到针对系统定义1所讨论系统的式34与实验数据非常接近。

  系统定义2

  验证系统2的式30、式31和式32更加困难。必须在管芯产生热量,利用二极管正向电压测量管芯温度,并将温度值与提出的RC网络的C1电压仿真数据进行拟合。这项工作可利用MATLAB编程实现。在已知整个芯片初始温度的情况下,记录不同时间的热特性非常重要。按照这种方式,我们还可以求解RC网络的初始电容电压。利用相同的测试装置(参见图7),接通电流通道并在示波器上采集二极管电压(图11)。



评论


相关推荐

技术专区

关闭