新闻中心

EEPW首页 > 测试测量 > 设计应用 > 一种新型智能清洁机器人测控系统的设计与实现

一种新型智能清洁机器人测控系统的设计与实现

作者:时间:2009-07-24来源:网络收藏

  D={近,中,远}

  设定其相应的语言变量,记作:

  ND=近,MD=中,LD=远

  以各路传感器在上的安装位置作为障碍物所在方位(记作:A)。超声波传感器安装在正前方,在其左右两边依次是接触传感器、下方红外传感器和周边红外传感器。则设方位信号的模糊语言集合为:

A={最左,较左,左,左下,中,右下,右,较右,最右}

  设定其相应的语言变量,记作:

BL=最左,ML=较左,L=左,LD=左下,M=中,R=右,RD=右下,MR=较右,BR=最右

  设驱动轮的动作集合为:

{右转,稍微右转,后退,减速,前进,稍微左转,左转}

  设定其相应的语言变量,记作:

TR=右转,TRL=稍微右转,GB=后退,SD=减速,GA=前进,TLL=稍微左转,TL=左转

  对于清洁来说,在避障的同时,还要能够对清洁区域进行遍历。在保证避障和遍历的前提下,为了减少控制器的计算量并避免程序复杂化,本文采用逐一查询方式获得模糊控制量之一障碍物方位,根据障碍物方位即可获得另一输入量即机器人与障碍物间的距离。容易理解,采用逐一查询方法意味着控制器获得的障碍物信息来自于最先被传感器系统检测到的障碍物,而且控制器将根据最先获得的障碍物信息来调用相应的避障策略。因此,当有2个或2个以上方位有障碍物时,执行避障策略时机器人有可能与障碍物发生碰撞。试验发现,只有当左边的最左、较左方位和右边的最右、较右方位都有一个或2个发现障碍物时,才有可能导致机器人与障碍物发生碰撞。为了避免这种情况发生,将机器人左右两边都发现障碍物的情况也作为一个障碍物方位变量,不论机器人左右2边是同时发现一个还是2个障碍物,都仅设其模糊语言为左右,设定相应的语言变量为LR。根据有利于避碰的原则,将障碍物方位信息的查询顺序确定为:

LD,RD,LR,M,BL,BR,ML,MR,L,R(左下,右下,左右,中,最左,最右,较左,较右,左,右)

  从机器人有效避障并保证尽量少的重复先前行走轨迹的角度出发,当确定了障碍物的方位和机器人离障碍物的距离后,我们希望模糊控制的输出量不仅仅是机器人动作集合中某一种动作,而是集合里某几种动作的合理组合。因此,针对不同方位的障碍物信息,对机器人左右驱动轮动作集合的7种动作 (TR,TRL,GB,SD,GA,TLL,TL)进行合理组合,即得到相应的合成输出量,记作Fi(i=1,2,3…)。根据前述方法,最终可归纳出 10种控制规则,即避障策略,如表2所示。

表2 控制规则表

控制规则表

  按照障碍物方位信息的查询顺序,其形式是:

if(Ai and D)then Fi

  i=1,2,3…10

  按照此种方法,在不影响机器人有效避障和相关功能的情况下,有效避障的控制规则大大减少,使避障算法简单化。

  4 实验结果

  在智能清洁机器人实验平台上对整个进行测试。实验在一间约10m2的房间中进行,在房间中随机摆放几件日常物品作为障碍物,将通过智能清洁机器人的行走实验,对本文所述的智能清洁机器人的软硬件性能进行验证。实验中,智能清洁机器人始终保持直线行走,遇到障碍物时,根据障碍物信息选择合适的避障策略避开障碍物,然后继续保持直线行走,直到遇到下一个障碍物。实验结果表明,该工作可靠,避障算法有效可行,智能清洁机器人能够自动回避障碍物,可以在无人情况下自主工作,能够实现家居环境下的智能化清扫。

  5 结束语

  在智能清洁机器人测控系统的进一步研究中,设计信息量更加丰富的检测系统,探讨非结构化环境下机器人的导航和自主定位技术,寻找更加有效的路径规划和避障算法,将是研究的方向和重点。


上一页 1 2 3 下一页

关键词: 机器人 测控系统

评论


相关推荐

技术专区

关闭