新闻中心

EEPW首页 > 测试测量 > 设计应用 > 高k介质中频率离散的原因

高k介质中频率离散的原因

作者:时间:2009-07-28来源:网络收藏

测得的电容可按照此模型校正而恢复,与测量无关,如图3(b)所示。串联电阻影响则可直接用在衬底背面淀积Al膜减至最小(图2(b)中的空心符号和图3(b)中的实线)。这表明,一旦考虑寄生分量时,有可能决定无误差的电容真值,保持测量系统的可靠性。

再研究高k MOS电路上损耗界面层的影响。在图1(b)中,要注意不是串联电阻影响引起的(因为此样品采用了有效面积大的衬底和Al背接触)。图1(a)中看到的缺失则可用高k层和界面层的相对厚度解释。图1(a)样品的界面层厚度(~1nm)与电容等效厚度(CET)~21nm比较可以忽略不计,这种情况下,高k层电容比界面层电容小得多(即ChCi)。但对于图1(b)的样品,尽管有Al背接触和较大的衬底面积,频率影响仍是很大的。此时Ch与Ci相当,将频率离散影响归因于界面层电容内的损耗(假定原始SiO2为~1nm),其中,缺陷是由界面位错和ZrO2/SiO2化学突变界面处键合配位中的固有差异引起的。

基于这一解释,图4(a)示出了采用双频技术做出的高k堆叠的4-元素电路模型,以便从损耗重建电容值。

图4(b)是校正后的C-V曲线,在三个完全不同的频率对上相互非常一致,证明模型在寻找电容真值方面是成功的。这表明,有损耗界面层也会影响高k堆叠中的频率离散。有损耗界面层对频率离散的影响也能用较密的SiO2膜(没有示出)替代原有SiO2或用厚得多的等效高k层(图1(a))加以抑制。

最后,考虑串联电阻和有损耗界面层二者的影响,评估LaxZr1-xO2的κ值频率相关性。图5(a)示出LaxZr1-xO2/SiO2堆叠中典型的频率离散影响,由于大的Al接触衬底和厚的高κ层,这里的影响现在只与其κ值频率相关性有联系。LaxZr1-xO2、ZrO2、LaAlO3和热SiO2的频率相关性也示于图5(b)以便比较。LaxZr1-xO2的k 值明显与频率(f)有指数律关系,称为Curie-von Schweidler定律 ,(0≤n≤1),式中指数(n)的值表明介质弛豫程度。当La的x组分为0.22和0.63时,n 值分别为0.981和0.985。产生这一结果可能有二个原因:金属氧化物中自由La+或Zr+离子的离子运动导致介质弛豫;自由金属离子与电子阱复合产生偶极矩而引起介质弛豫。揭示LaxZr1-xO2介质弛豫确切的机理需要做进一步的研究。

结论
频率离散产生的两个原因是损耗界面层和串联电阻和衬底背接触不完美,只有在抑制有损耗界面层和串联电阻及不完美背接触的影响后,才能评估k值的频率相关性。基于两个等效电路模型对这些影响进行分析和建模。研究每一个影响后,在LaAlO3和ZrO2介质中没有观察到k值的频率相关性。但LaxZr1-xO2介质的k值有明显的指数律相关性,可用Curie-von Schweidler定律建模。



上一页 1 2 下一页

关键词: 介质 频率 离散

评论


相关推荐

技术专区

关闭