新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于LM3S101 处理器的温度测量模块设计

基于LM3S101 处理器的温度测量模块设计

作者:时间:2010-11-23来源:网络收藏

  1.2 处理器的选型:

  处理器是整个测温模块的控制及数据处理的核心。特别是在本设计中,由于热敏电阻的阻值需要直接由处理器进行检测,其性能会对测温效果、精度、数据处理速度等产生较大影响。综合处理器速度、性能与价格的考虑,选用ARM 处理器33 是基于ARM CortexTM-M3 内核的控制器,该器件是32 位处理器,采用哈佛架构、Thumb-2 指令集,主要特点[2]如下:1)具有32 位RISC 性能;2)具有2 个内部存储器,内部集成了8 KB 单周期的Flash ROM,2 KB 单周期的SRAM;3)具有2 个32 位的通用定时器,其中每个都可配置为1 个32 位定时器或2 个16 位定时器,同时还有遵循ARM FiRM 规范的看门狗定时器;4)具有同步串行接口SSI,和UART 串行接口, 具有很强的信号传输功能;5)2~18 个GPIO 端口,可编程灵活配置;6)时钟频率达到20 MHz。

  除此之外, 该款处理器由于采用CortexTM-M3 内核,支持单周期乘法运算,这在测温数据处理时会有较高的数据处理速度与效率。同时,该处理器成本低。

  1.3 影响测温精度的主要因素:

  由于采用RC 充放电的方式获取热敏电阻阻值, 因此整个测温模块所需外围元件很少,热敏电阻阻值获取的精度是影响模块测温精度的主要因素之一。由热敏电阻阻值获取原理可以看出,影响测温精度的主要因素有:1)参考电阻RF的精度;2)热敏电阻RT的精度;3)处理器内部定时器的位数与精度。处理器工作频率越高,定时器位数越大,则处理精度越好。

  阻值获取的精度是与处理器的输出电压值、门限电压值、电容C 的精度、电阻RD的精度无关的,因此只要合理选择处理器和高精度的RF与RT, 就可以使热敏电阻阻值的测量有较小的误差。为保证测温精度,热敏电阻RT选用标称值为10 kΩ(或100 kΩ),B 值为3 950,1%精度热敏电阻,参考电阻RF选用10 kΩ(或100 kΩ),1%精度的金属膜电阻。

  1.4 模块硬件电路设计:

  以ARM 处理器3 为核心, 结合上述热敏电阻阻值获取原理,给出该测温模块核心部分电路原理图,如图2 所示。

2.jpg
  由图2 可看出,按上述的电容充放电热敏阻值检测原理进行硬件设计,核心部分电路较为简洁,避免了传统方式中A/D 器件的应用,达到了简化硬件电路设计,降低硬件成本的目的。同时,这种设计又不过多占用处理器的I/O 端口,对处理器资源的占用也较少。由于这种方式在阻值获取时需处理器具有较高的计数精度,而在阻值到温度值转换时需处理器具有较强的运算能力, 因此选用LM3S101 进行核心处理,其20 MHz 的时钟频率及ARMCortex-M 内核集成的硬件乘法单元对此有很好的保证。电路图中,其他部分简要说明:SP6201是集复位功能于一体的低压差线性稳压(LDO)器,将5 V 电源转换为处理器LM3S101 所需的3.3 V, 同时产生处理器工作所需的复位信号。电阻RF、RT、RS和电容C6构成RC 充放电电路,用以实现热敏电阻阻值的检测,与处理器通过PA2、PA3、PA4 3 个GPIO 接口相连。LM3S101 的10 和11 引脚使用其UART 功能,连接至电平转换电路,以实现模块通过串口的通信及温度数据发送功能。



关键词: S101 101 LM3 LM

评论


相关推荐

技术专区

关闭