新闻中心

EEPW首页 > 测试测量 > 设计应用 > 一种高速化和集成化的数据采集系统的设计

一种高速化和集成化的数据采集系统的设计

作者:时间:2011-03-17来源:网络收藏

  目前需要对adc.v模块进行功能仿真,以此验证该模块的功能的正确性。仿真测试的方法就是给adc.v这个模块的s_data数据输入端,即A/D芯片的串行数据的输出端,加载一组测试数据,每16个为一组测试数据,模拟在真实环境下从A/D芯片读取出来的二进制数据,然后在adc.v模块的输出端,即并行的16位宽的data_out端口观察是否与给定的测试数据相一致。假如一致,则模块的功能是正确的。假如有个别位的数据不一致,则需要检查模块的代码是否存在问题。在编辑器中编写Testbench程序如下(非关键的程序限于篇幅,就省略了):



  由上面的程序可以看见,给s_data端加载的一组16位二进制数据为“0000-0011_0110_1011”。在ModelSim环境下,将待测试的文件与该测试文件放在同一个工程下,设置好相关参数后运行仿真可以得到如下仿真波形,如图7所示。

仿真波形

图7 仿真波形

  由图7可见,从data_out这个并行的数据端口读出的数据正是在Testbench仿真测试文件中给定的那一组测试数据,仿真得到的结果是正确的。

  4 的实验

  在FPGA控制A/D芯片接口的软件设计中,是通过FPGA内部的逻辑电路实现了分频,并将分频后的信号作为A/D芯片工作的采样时钟,经过测试,得知A/D芯片的采样频率为1.08 MHz,通过信号发生器,将输入的模拟信号设为10 kHz、幅度为3 V的正弦波,采样转换后的数据上传到上位机中,显示的波形如图8所示。

10KHZ信号输入时得到的波形

图8 10KHZ信号输入时得到的波形

  在同等条件下,把输入的模拟信号的频率调整为5 kHz。A/D芯片的采样频率仍然为1.08 MHz。得到的显示波形如图9所示。

5 kHz信号输入时得到的波形

图9 5 kHz信号输入时得到的波形

  由图8和图9可知,在对模拟信号采样时,当采样率不变时,输入模拟信号的频率越低,相对地就提高了采样点、减小了采样间隔,在图形中就越能体现出原始模拟信号的信息,得到的波形就更加的理想。

  5 结束语

  本文在研究了FPGA和USB2.0技术的基础上,提出了的总体设计方案,以FPGA和USB2.0为技术核心,设计了硬件电路和软件代码并在ModelSim环境下通过了仿真测试。该系统不仅能够实现一般用途的数据采集,还实现了系统的高速化、和低功耗工作,为便携化提供了一种设计思路。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭