新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于GPS功角测量及同步相量的电力系统应用研究

基于GPS功角测量及同步相量的电力系统应用研究

作者:时间:2012-04-04来源:网络收藏

只要已知转子在初始时刻的位置θ0以及任意时刻的速度ωr(t),就可以准确地确定转子在任意时刻的位置θ(t)。ωr(t)由转速表负责,其精度与的稳定状态无关,所以在正确确定θ0后,能通用于的任意状态,并且也通用于汽轮发电机组和水轮发电机组。
文献[8]则提出利用转子位置检测器和发电机功角转速装置来直接获得系统功角和转速,进而监视系统稳定性。其中位置检测器由同轴装的3个圆盘组成,即发光盘、遮挡盘、光敏盘。光敏盘固定在定子上,遮挡盘与转子为弹性连接并同轴旋转。发光盘上装有发光二极管,光敏盘上装有光敏三极管,遮挡盘上有一个圆孔,当转子带动遮挡盘旋转后,光敏三极管收到光信号的变化,呈导通和截止两个状态。文献[9]也提出用发电机调速系统来直接测量发电机功角,是利用转速测量装置经分频得到与Eq向量的频率始终保持一致的正弦波,通过一定的算法与系统电压比相,再对所得相角预校正求出发电机的功角。
文献[10]提出了两种直接测量功角的方法:传送波形的测量方法和利用同步时钟的测量方法,并对两种测量方法精度和误差进行了分析。前者对通道的质量要求很高,要求调制解调器和传输通道在传送过程中不发生波形失真。另外收端必须对对方传送过来的波形进行时延和相移补偿,而由于气候、环境等因素的影响,时延和相移测量结果往往不很准确,这就严重地影响了功角测量的精度。如果利用两个精度很高的同步时钟即可避免上述问题。
文献[11]介绍了一种同步发电机功角的高精度测量方法。这种方法采用转子位置传感装置和误差软件补偿技术,并利用高精度授时信号实现异地信息同步采集。用转子位置信号代替空载电势参与相位比较。转子位置信号通过装设转子位置传感装置获得。发电机功角可以通过测量转子位置信号与发电机端电压信号的相位差得到,其值等于空载时的相位差减去负载时的相位差。并对测量误差的来源、性质及其软件补偿技术作了描述。

2 同步的应用
随着基于同步技术的电网相角监测系统的采用,实时精确测量系统中各关键点的电压电流, 使得人们能实时地看到系统的状态,从而在中利用同步实施相量控制这一电力系统稳定控制最直接的方法成为可能。
相角测量可望在电力系统的状态估计、静态稳定的监视、暂态稳定的预测及控制和自适应失步保护方面发挥其作用[2,12,13]
1) 应用PMU在电力系统做了很多试验研究,如短路试验[14]、切机试验和甩负荷试验、发电机失磁试验[15]、线路的开断试验[16]等。通过PMU做的这些试验,使人们首次看到了系统的动态行为,认识到了以往所没有的现象和规律。对于动态电力系统建立的系统元件数学模型难以通过现场试验进行验证,数学模型的参数也很难准确确定,从而影响了数字仿真的精度和数学模型的适用范围。基于PMU的同步相量提供了一种验证数学模型和对其进行参数估计的基础。并能应用于系统负荷模型的建立,系统等值等方面。
2)系统的状态估计是一种数学方法,通常状态估计是解系统的特征非线性方程求解,确定系统的稳定性,然而其计算时间比较长,难以在暂态过程中得到应用。若系统在所有节点安置相角测量装置,它对电压相量的状态估计是一个线性估计或状态确定;若系统在部分节点安置相角测量装置并使系统可观察时,它对电压相量的状态估计是一个线性估计。因此将同步相量值加入到现有的状态估计中,可提高状态估计的精度,做到实时运行。
文献[17]归纳了由同步正序电压空间矢量族出发,网络的状态估计只需解线性代数方程,系统的动态状态估计便可方便地实现。文献[18]提出了称之为使潮流方程直接可解的PMU配置方案。通过讨论电压型PMU的配置,目标是使潮流方程直接可解。电力系统结构的高度的稀疏性,因此有可能通过对部分节点适当配置PMU,即适当安排节点类型中PQVΘ节点和PVΘ节点的数量和分布,可使潮流方程按一定顺序形成一种可解结构,形成一种非迭代的直接求解潮流方程的方案,进而可以获得全部节点的电压相量。并定量地分析引入PMU以后对状态估计精度的改善程度。
3)相角测量得到的同步相量能极大地改善系统稳定的预测及控制。
调度中心可根据各个点的实时相角,建立全系统的实时相角集中监视系统,给调度员提供预防故障的措施或减少事故影响的补救办法,根据相角信息可采取紧急措施(如切机、甩负荷、解列等),防止系统的崩溃。
最常用的预测方法是在实测相角曲线的基础上利用自回归(AR)、多项式[19,20]或频角关系等预测相对角度的轨迹,然后以角度大于某一限制值或依据预测模型的稳定性判断系统的稳定性。但是其误差随预测长度的增加变大,在暂态初期,轨迹变化较剧烈时,预测精度更难保证。而且角度判稳的标准一般为统计值,其正确性缺乏理论证明。
文献[21]提出分段恒流等效法。基本思想是直接利用电力系统的详细模型,用当前时刻的实测的电压向量作为输入,通过逐步积分法预测未来一段时间内系统的轨迹,在发电机角度变化的微小邻域内假定负荷为恒流源,当发电机角度超出界限时,更新负荷的等效恒流源。
文献[22]提出的方法的基本思路是由发电机的同调特性在大量仿真观察的基础上根据功角对发电机进行离线预分群,在线动态修正。另外还有为自适应失步保护[23]提供出口动作启动条件的稳定预测方法。它首先把系统等值成双机系统,然后利用安装在两个区域间联络线变电站的相量测量单元(PMU)测量的电压电流相量推算等值机的运行状态,再利用等面积法则(EAC)判断系统的稳定性,当发现系统失去稳定后该装置可以分离失步区域。
文献[24]提出了基于同步相量测量单元的预测型振荡解列方法。振荡中心两侧母线电压的相角差反映了功角差,利用该相角差的变化速度及符号,可以判定是同步振荡还是异步振荡以及滑差的情况,并实现预测解列功能。
S.E.Stanton等人从部分能量函数[25]出发,分析多机系统中单机的能量,提出用PMU检测发电机的转速ω的最大数值,并和由能量函数理论通过离线仿真求得的转速坎值比较决定切机量。
较新的智能预测法采用模式识别、神经网络和模糊推理等人工智能手段以实现暂态稳定的快速预测。如文献[26]提出的决策树法通过对不同运行方式和不同故障的仿真计算,仅使用机组的内电势角度作为输入,针对不同训练机集组合构造多个决策树。文[27]提出一种基于模糊神经网络实时预测系统暂态稳定性的方案。但它采用PMU在故障切除后8个周波内的测量结果作为输入,输入数为发电机数的6倍,当系统规模较大时,训练过程非常困难。文献[28]提出基于模糊分类的径向基网络模型及算法,先利用无导师学习方法按照样本的特性,对输入样本进行模糊分类,然后对各类样本分别训练径向基网络,进一步提高了训练速度。利用同步相量测量装置获得的故障后短时间内各发电机的功角,经简单运算后作为神经网络的输入,其输出为多机电力系统稳定性的分类结果。
另外,电压稳定分析中的方法如潮流多解法、雅可比矩阵奇异、灵敏度分析法等,都需要不同程度的复杂计算,应用于电力系统实时控制时存在一定的困难。国内外一些学者直接利用电压相量进行电压稳定分析和实时控制已作了一定的工作,F.Cubina等人的研究[29]认为,即使在复杂系统中,电压相量所含的信息足以确定电压稳定的裕度,并推导出用电压相量法来决定电压崩溃的近似指标算法。文献[30]提出了利用节点的实时信息:电压相量、电流等和来自系统的准实时信息,将整个系统等值,导出了电压稳定实用判据。文献[31]提出了基于图论的分簇算法和两个相关性的判据,用一个节点测量的电压相量代替整个簇的节点电压相量,形成近似雅可比矩阵,求出最小奇异值作为电压稳定近似指标,该方案已运用于实时控制中。文献[32]提出了利用节点电压相量计算的新的电力系统电压稳定指标(VSI),计及网络的不同拓扑结构,运用修改的图论方法导出寻找最弱传输路径的简便算法。
在暂态稳定控制方面,文献[33]进行了基于同步时钟测量各发电机转子的角度和速度,用它们作为信号对发电机进行非线性励磁控制的研究,与取系统中一台机为无穷大机的控制方法相比,将具有更优良的控制性能。
电力系统实时相角测量系统能为集中控制提供相角信息,基于GPS的稳定控制只有针对多机大系统才能发挥其优势,而多机系统稳定控制理论方法的滞后使得目前的电力暂态稳定在线控制的研究多是基于在线预决策或暂态安全分析,真正利用GPS同步监测系统提供的同步相量的同步相量区域稳定控制理论还待进一步研究。还可以将相量信息提供给就地控制使用,可以实现分散的暂态稳定控制。
4)相角测量用于系统失步保护可以简化参数的设计。应用测得的相角条件作为判据,能够不必考虑故障的类型,设定参数非常容易。应用相角这个量必将会产生新的保护思想和装置。文[34]针对发电机失步预测保护所存在的问题,介绍了一种基于功角直接测量的自回归预测失步的方法,并在此基础上提出了一套完整的保护方案。文[35]提出利用势能概念的基于同步电压电流测量相量的精确在线检测失步技术。随着电力系统互连网络的增大,控制系统和保护越来越复杂,实时相角测量为电力系统的稳定控制和保护开辟了一个新的领域。
5)灵活输电系统(FACTS) 在提高线路输送能力、阻尼系统振荡、快速调节系统无功、提高系统稳定等方面的优越性能,而将相角测量装置的实时相角送到FACTS中[36],可简化其控制算法,从而得到更加灵活的控制。

3 结束语
利用GPS同步测量可以快速精确的获得电力系统的历史数据和实时状态,GPS技术的应用必将对电力系统的安全稳定控制带来革命性的变革,因此必然成为今后发展的重点;基于同步相量区域稳定控制理论的进一步研究,实时相角测量必将为电力系统的稳定控制和保护开辟一个新的领域。目前的技术条件已经基本满足,当务之急是建立和发展以GPS为基点的电力系统安全稳定控制理论。

本文引用地址:http://www.eepw.com.cn/article/194146.htm

接地电阻相关文章:接地电阻测试方法



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭