新闻中心

EEPW首页 > 测试测量 > 设计应用 > 短波宽带全向天线应用研究

短波宽带全向天线应用研究

作者:时间:2013-04-17来源:网络收藏

摘要:应用数值分析法对授时系统——线栅型扇锥结构进行了分析和仿真。对不同导线根数、天线馈电间距和扇面角时的驻波比和增益的影响进行了讨论。结果指导调整了授时系统,使其在5~15 MHz频率上电压驻波比小于1.5,达到了满意授时效果的要求。
关键词:授时;宽带全向天线;线栅型扇锥结构;矩量法;VSWR

0 引言
国家授时中心BPM短波授时系统每天24 h连续不断地以4种频率(2.5 MHz,5 MHz,10 MHz,15 MHz)发播我国地方协调时UTC1和世界时UTC(NTSC)标准时间、标准频率信号,信号覆盖半径3 000 km,用户时间同步精度为毫秒量级。使用的天线有水平角笼天线和宽带天线。宽带天线采用线栅型扇锥结构的5~15 MHz短波全向天线。为了确保BPM短波授时系统不间断地发播并达到满意授时效果的要求,除发射设备必须满足电波发射质量和高可靠性的要求外,关键的技术因素就是天线了。对宽带天线的深入研究和应用,同发射设备保持良好的匹配是很有意义的工作。

1 天线形式特点
5~15 MHz短波宽带全向天线采用线栅型扇锥结构,是一种典型的宽带天线。该天线的结构形式,几何尺寸如图1所示。

本文引用地址:http://www.eepw.com.cn/article/192819.htm

d.JPG


在短波波段,以比较小的尺寸实现宽带化较为理想的天线形式就是扇锥结构天线。扇锥天线在结构形式上属于偶极对称水平天线,理论上具有任意宽的频带。
实际应用中的扇锥天线高频受制于激励区的几何尺寸,低频受制于锥体长度。天线的特性阻抗z0为:
zin=zo=120lncot(θ/4) (1)
式中θ为锥顶角。该天线使用特性阻抗为300 θ平衡馈线馈电,天线的特性阻抗为300 Ω,对应的锥顶角θ=18.77°,对应的扇面角为58°。
在工程应用中均采用水平架设,一般不能制成锥笼形式而是以锥体展开成扇锥的形状,仍然可以保持特性阻抗不改变。通过合理地选择扇锥的扇面角、锥顶角、导线的数量、线径和线距、激励区尺寸就可获得需要的带宽。
5~15 MHz短波宽带全向天线的每个水平面由11根直径为φ4铜包钢导线组成,通过φ4铜线组成特性阻抗为300 Ω的平衡馈线馈电,馈线通过300 Ω/50 Ω宽带平衡/不平衡转换器,再由特性阻抗为50 Ω高频电缆进入机房由天线交换开关连接到发射设备。
由于这种宽带天线振子导线数目多,同水平角笼天线相比较能承受更高的功率。馈线在传输电话时的最大允许功率(单位:kW)为:
f.JPG
式中:d为导线直径(单位:mm);w为馈线特性阻抗;n为每边平行导线数目;s为馈线上的驻波比。算出P=30~50 kW,取安全系数为3,即可承受10~17 kW的功率。

2 数据计算与分析
BPM短波授时5~15 MHz宽带全向天线为中馈形式。由于该天线架设时受天线场地地形的限制,天线的实际尺寸同比原设计尺寸有所缩减,详细数据见表1。

g.JPG


天线投入使用后,10 MHz,15 MHz频段可以满足与发射设备的配合,5 MHz频段不能满足与发射设备的匹配,对天线作了1/4波长短截线匹配后,初步可以供发射设备应急使用。在阻抗转换器不平衡端测量天线输入阻抗值、驻波比见表2。

h.JPG


众所周知,双锥天线的阻抗决定于锥顶角,频率范围决定于振子线长度。表1中实际安装数据的变更,使该天线在低频段的驻波比难以达到满意授时效果的要求。为了满足电波发射质量和高可靠性的要求,亟待对此问题进行分析寻找解决问题的有效途径。
对于有限长双锥天线已有文献和书籍进行了详细的研究,由于扇锥结构严格的推导过于复杂,此处运用矩量法来计算。在矩量法计算中,基函数的选取对于计算的速度及精度都有很大的影响,线栅型扇锥天线导线数量多,采用阶梯函数为基函数收敛速度慢,为收到较快的收敛效果,该计算采用了正弦插值基。采用正弦插值基时,第Nj电流可以用下式表示:
Ij(N)=Aj+Bjsink(n-nj)+Cjcosk(n-nj),|n-nj△j/2
式中:△j是第J段的长度,nj是该段中点的坐标;Aj,Bj,,Cj为三个未知系数。线栅型扇锥结构天线采用圆柱状导线,正弦插值基可以较好地逼近实际天线电流,因而具有较快的收敛速度。

波段开关相关文章:波段开关原理



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭