新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 基于改进的CORDIC算法的FFT复乘及其FPGA实现

基于改进的CORDIC算法的FFT复乘及其FPGA实现

作者:时间:2011-07-06来源:网络收藏

3.3 模校正因子的实现
基本中在n级迭代执行之后,被旋转向量的模已经被改变了,的完全实现应该附加一个模校正环节,即Xn、Yn乘以模校正因子。对于迭代次数N大于10的,其模校正因子可认为已趋近常数K=0.607 25。而直接在流水结构后附加乘法器的直接实现方法,使原本由移位器和加法器组成的整体结构变得不规则,同时乘法器一级速度的变慢会降低整个流水的吞吐率[3,4]。

这样分解后,被旋转向量与K的乘转化为简单的移位加减运算,从而可以解决乘法器一级速度变慢而降低整个流水线吞吐率的问题。其硬件实现结构如图2所示。这种结构进一步降低了硬件复杂度,与前面的流水线结构相似,使整体结构更加规则统一,有利于VLSI实现。

4 复乘的实现
由于软件和DSP实现的速度较慢,而资源丰富,组织结构便于采用流水线结构和并行运算,其速度快、扩展能力强,所以CORDIC算法的移位、加减法运算和流水线结构更容易在上实现。本文在Altera公司的QuartusⅡ7.2软件环境下使用VHDL,利用上述各种算法设计了16 bit宽的复乘模块并在CycloneⅡ EP2C35F672C6芯片上进行验证。
图3为改进的16级流水线结构的CORDIC算法实现复乘模块的顶层结构图,address为ROM的地址,Xi_re、Xi_im为输入序列的实部和虚部,Xo_re、Xo_im为旋转后的实部和虚部。输入数据为16 bit宽,为提高精度,对所有内部信号及输出信号都用20 bit的补码。整个复乘主要由系数ROM、预旋转、16级流水线CORDIC迭代、系数寄存器和模校正因子K 5个模块组成。

小,但不能完全消除。

图5为改进的CORDIC算法实现复乘资源消耗与最高工作速度情况。传统的复乘要4个乘法器,所以传统的复乘要实现16 bit位宽复乘需用此芯片中的8个9 bit乘法单元,而从资源消耗情况来看,改进的CORDIC算法实现此复乘没有用乘法器,整个逻辑单元消耗也只有4%;另外基于改进的CORDIC算法的复乘最高工作频率达到了190 MHz,与传统CORDIC算法的复乘速度(约130 MHz)相比有较大提高,在节约资源的同时提高了工作速度。

本文利用定点FFT复乘运算中旋转因子的旋转系数可预先求出的特点,采用改进流水线结构的CORDIC算法,与传统的CORDIC算法的复乘相比,不仅不需要乘法器实现了FFT运算中序列与旋转因子的复数乘运算,并且在节约资源的同时提升了工作速度。这种基于改进的CORDIC算法的复乘运算对提高FFT处理器的速度和减少资源消耗有较大意义。同时,利用VHDL语言,采用模块化设计思想,使得本设计可移植性强、通用性好,只需作少量改动(如增加位宽,增加迭代次数),便可满足精度上的更高要求,具有一定的工程实际意义和应用前景。
参考文献
[1] 李成诗,初建朋.基于CORDIC的一种高速实时定点FFT的FPGA实现[J].微电子学与计算机,2004,21(4).
[2] 吴伟,唐斌.现代雷达中的高速FFT设计[J].空军工程大学学报(自然科学版),2005(10).
[3] KHARRAT M W,LOULOU M,MASMOUDI N,et al.A new method to implement CORDIC algorithm[C].IEEE International Conference on Electronic,Circuit and Systems,2001(2):715-718.
[4] 杨宇,毛志刚,来逢昌.一种改进的流水线CORDIC算法结构[J].微处理机,2006(8).
[5] 李滔.流水线CORDIC算法及其应用研究[D].北京理工大学,1999.


上一页 1 2 下一页

关键词: CORDIC FPGA FFT 算法

评论


相关推荐

技术专区

关闭