新闻中心

EEPW首页 > EDA/PCB > 设计应用 > EMC设计器件选择及电路介绍

EMC设计器件选择及电路介绍

作者:时间:2012-04-14来源:网络收藏

1.1.4扩展频谱时钟

本文引用地址:http://www.eepw.com.cn/article/190513.htm

  所谓的“扩展频谱时钟”是一项能够减小辐射测量值的新技术,但这并非真正减小了瞬时发射功率,因此,对一些快速反应设备仍可能产生同样的干扰。这种技术对时钟频率进行1% ~ 2% 的调制,从而扩散谐波分量,这样在CISPR16或FCC发射测试中的峰值较低。所测的发射减小量取决于带宽和测试接收机的积分时间常数,因此这有一点投机之嫌,但该项技术已被FCC所接受,并在美国和欧洲广泛应用。调制度要控制在音频范围内,这样才不会使时钟信号失真,图2是一时钟谐波发射改善的例子。扩展频谱时钟不能应用于要求严格的时间通信网络中,比如以太网、光纤、FDD、ATM、SONET和ADSL。

  绝大多数来自数字电路发射的问题是由于同步时钟信号。非同步逻辑(比如AMULET微处理器,正由steve Furbe教授领导的课题组在UMIST研制)将大大地降低发射量,同时也可获得真正的扩频效果,而不只是集中在时钟谐波上产生发射。

  

1.2模拟器件和电路设计

  1.2.1 选择模拟器件

  从的角度选择模拟器件不象选择数字器件那样直接,虽然同样希望发射、转换速率、电压波动、输出驱动能力要尽量小,但对大多数有源模拟器件,抗扰度是一个很重要的因素,所以确定明确的订购特征相当困难。

  来自不同厂商的同一型号及指标的运算放大器,可以有明显不同的性能,因此确保后续产品性能参数的一致性是十分重要的。敏感模拟器件的厂商提供EMC或电路设计上的信噪处理技巧或PCB布局,这表明他们关心用户的需求,这有助于用户在购买时权衡利弊。

  1.2.2 防止解调问题

  大多数模拟设备的抗扰度问题是由射频解调引起的。运放每个管脚都对射频干扰十分敏感,这与所使用的反馈线路无关(见图3),所有半导体对射频都有解调作用,但在模拟电路上的问题更严重。即使低速运放也能解调移动电话频率及其以上频率的信号,图4表明了实际产品的测试结果。为了防止解调,模拟电路处于干扰环境中时需保持线性和稳定,尤其是反馈回路,更需在宽频带范围内处于线性及稳定状态,这就常常需要对容性负载进行缓冲,同时用一个小串联电阻(约为500)和一个大约5PF的积分反馈电容串联。

  进行稳定度及线性测试时,在输入端注入小的但上升沿极陡 (1ns) 的方波信号(也可以通过电容馈送到输出端和电源端),方波的基频必须在电路预期的频带内,电路输出应用100MHz(至少)的示波器和探针进行过冲击和振铃检查,对音频或仪表电路也应如此,对更高速模拟电路,要选取频带更宽的示波器,同时注意使用探头的技巧

  超过信号高度50%的过冲击表明电路不稳定,对过冲击应予以有效的衰减,信号的任何长久的振铃(超过两个周期)或突发振荡表明其稳定度不好。

  以上测试应在输入及输出端均无滤波器的情况下进行,也可以用扫频代替方波,频谱分析仪代替示波器(更易看出共振频率)

  



评论


相关推荐

技术专区

关闭