新闻中心

EEPW首页 > EDA/PCB > 设计应用 > Kaiman滤波算法在FPGA上的设计与实现

Kaiman滤波算法在FPGA上的设计与实现

作者:时间:2012-05-07来源:网络收藏

Kalman滤波理论在20世纪60年代一经提出,便得到了军事、控制、通信等领域的极广泛的应用。它可以实现随机干扰下的线性动态系统的最优估计,目前Kalman滤波器的实现方式主要有两种,一是在PC机上实现,可以同时满足计算精度和实时性的要求,但是PC机体积大,质量重,成本高;二是通过DSP等芯片来实现,用这种方式实现的Kalman滤波器虽然体积小,质量轻,但是因其指令顺序执行的CPU架构,在系统复杂时无法满足系统的实时性要求。随着控制系统的复杂性的提高,系统的阶次变大,如组合导航系统的滤波,其滤波的阶次一般都要18阶,如果对系统进一步细化建模或增加其复杂性,其滤波阶次可以达到几十阶。因此,Kalman滤波器在工程应用中的实现遇到了系统体积、重量、成本和系统精度、速度等性能不能兼顾的问题。随着现代电子技术的发展,具有系统结构和逻辑单元灵活、集成度高以及适用范围宽等特点,可以很好地解决这个难题。因为采用的是硬件并行算法,能很好的解决速度和实时性的问题,并且其具有灵活的可配置特性和优良的抗干扰能力,使得构成的数字信号处理系统非常易于修改、测试及硬件升级。随着FPGA技术的不断成熟,其内嵌资源不断丰富,硬核乘法器和块RAM的数目不断增长,使得FPGA实现复杂的数字信号处理算法变得更为简单和快速。因此,本文对FPGA技术和Kalman进行结合研究,探索Kalman在FPGA中的实现方式并进行性能验证,以对基于FPGA的Kalman的工程实现提供参考。

本文引用地址:http://www.eepw.com.cn/article/190405.htm

1 Kalman滤波算法理论

Kalman滤波是在时域内以信号的一、二阶统计特性已知为前提、以均方误差极小为判据,能自动跟踪信号统计性质的非平稳变化,具有递归性质的一种算法。它处理的对象是随机系统,并能正确估计出有用信号。设离散系统差分方程如下:

则Kalman滤波方程组如下:

状态一步预测方程:

从式(1)~(6)可知,若利用传统的处理器实现Kalman滤波算法,由于其指令执行的顺序性,至少需要分为5步来实现,其中每一步还都需要进行至少1次的加法和乘法等运算,每次运算都要顺序执行,其执行速度和效率很低;如果利用FPGA来进行Kalman滤波,根据其各步的逻辑关系,可以分为3步来实现,即第一步计算状态一步预测值和一步预测均方误差Pk+1/k,第二步计算滤波增益Kk+1,第三步计算状态最优估值和估计均方误差Pk+1/k+1。由此可知,利用FPGA技术可以实现Kalman滤波的并行计算,压缩计算时间,提高解算速度。因此,对FPGA的Kalman滤波进行研究开发,可实现基于FPGA的快速Kalman滤波解算,满足在对实时性要求更高的环境中使用。

2 在FPGA中实现Kalman滤波算法研究

由于FPGA实现Kalman滤波解算速度非常快,若利用FPGA的串行口依次输入观测值,由于数据串行输入的特点,会使FPGA的解算部分等待数据接收完毕才能执行滤波解算,导致整体的解算时间过长。为检验FPGA实现Kalman滤波器的计算性能,本文预先将观测值输入并保存于FPGA内的ROM中,以使FPGA可以连续地进行滤波解算,实现方案原理如图1所示。

图1中,Kalman滤波解算在FPGA内完成,RAM和ROM使用FPGA内嵌的硬件RAM存储器,其中RAM暂存每步的中间结果,ROM存放滤波中的固定系数,如观测矩阵、噪声系数阵等。Kalman滤波的解算过程主要利用内嵌的硬核乘法器等资源来完成。因解算速度较快,解算结果暂存于一个稍大的存储器内,同时通过串行口输出到PC机上保存用于分析。该方案的关键问题是在FPGA中实现Kalman滤波算法。

FPGA实现Kalman滤波器,其实质就是控制数据的转移和存储并实现矩阵的相乘、加、减、求逆等运算。其中,数据的转移控制需要有限状态机(FSM)来完成,同时FPGA设计中,不可避免的会遇到资源与速度的问题。因此,需要对上述各关键技术进行研究和实现。

2.1 矩阵相乘在FPGA中的实现

Kalman滤波计算中最基本的步骤就是矩阵相乘。对于其中最常见的D=A×B×C型的矩阵相乘,有两种实现方式:方式一,分步相乘;方式二,直接相乘。事先将矩阵A,B,C分别存入ROM1,ROM2,ROM3中,方式一中,首先进行两个矩阵的相乘,多路选择开关MUX选通ROM1和ROM2,依次读取其中的数据进行乘加,完成前面两个矩阵的相乘,结果存入ROMTEMP中;然后,MUX选通ROMTEMP和ROM3,利用前面同样的资源,完成三个矩阵的连乘。方式二中,ROM1,ROM2,ROM3同时输出数据,MUX根据解算需要配置乘法器和加法器的输入,所有的过程同时进行。从上面的执行过程可知,方式一的执行需要占用更多的时间,而方式二的执行会占用更多的资源。对于上述N阶的3个矩阵相乘,其占用资源和所需时间如表1所示。

由表1可知,对于维数越大的矩阵相乘,需要的浮点加法器越多。由于浮点加法器的生成利用FPGA内的基本逻辑单元——可配置逻辑块(CLB),所以其占用的CLB等资源也越多。这种现象在上述方式二中尤为突出。本文中研究拟先实现二阶Kalman滤波器,阶次较低,资源相对充足,为检验FPGA实现Kalman滤波器的快速性,选用第二种方式进行矩阵相乘,以得到最快的解算速度。


上一页 1 2 3 下一页

关键词: Kaiman FPGA 滤波算法

评论


相关推荐

技术专区

关闭