新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 可将数据转换器IP成功集成到系统芯片的12种设计技

可将数据转换器IP成功集成到系统芯片的12种设计技

作者:时间:2013-05-28来源:网络收藏

技术2:靠近模拟I/O焊盘

进入模拟-数字转换器输入的任何噪声或不需要的信号将被转换器视为“真”信号,继而出现在数字输出中。模拟-数字转换器能够区分的最小电压(用最低有效位(LSB)表示)决定的准确度,也是模拟-数字转换器最大摆幅(FS)及其分辨率(N)的函数(如以下方程所示)。以0.5V峰-峰最大输入摆幅的12位单端模拟-数字转换器为例,最低有效位范围很小,仅为122.1μV。

LSB = FS/2N

在如此高的准确度要求下,如果转换的数字信号(攻击者)电容耦合(串扰)到模拟-数字转换器输入(受害者),数字输出信号中耦合的攻击信号的频谱含量可能会超出模拟-数字转换器的噪声本底值,从而影响系统性能(频谱纯度)。

同样,串扰数字-模拟转换器输出对系统性能产生相似的影响,即转换的数字信号电容耦合到数字-模拟转换器输出可以生成超出数字-模拟转换器噪声本底值的频谱含量。

采用差分输入的模拟-数字转换器,或是采用差分输出的数字-模拟转换器,都具有较强的抗共模噪声干扰能力,因为攻击者均衡地耦合到正负差分信号。为充分利用这种高抗噪声干扰能力,使用这些应同时采用正确屏蔽和外部信号布线等

当数据转换器需要外部基准时也会出现类似的问题。由于基准决定数据转换器的满幅输入摆幅,如果噪声或不需要的信号与基准耦合,就会成为数据转换器输出信号的一部分。

图4a显示了28纳米12位Sigma-DeltaIQ模拟-数字转换器频谱,可以看到转换器输入与基准信号之间有耦合。这会导致第二谐波(h2)能量过大,将总谐波失真(THD)降低近14dB。相反,图4b显示的是相同IQ模拟-数字转换器在耦合消除后的性能,这会使总谐波失真改善,达到-72dBc。

基准对流经非零电阻(电阻压降)基准路径的非零电流造成的压降很敏感。这一效应会在转换中产生系统性的偏移(offset)和增益误差(gain error)。

考虑到这些影响,将数据转换器正确植入之后,下一步就是对转换器和I/O之间的模拟信号进行布线,同时采用以下技术:

技术3:保持模拟布线路径简短

保持模拟布线路径尽可能简短,使无关信号不太可能耦合到模拟I/O出或基准中。

技术4:增加屏蔽

为尽可能减少关键模拟信号的噪声耦合或串扰,特别是在串扰无法避免的情况下,设计人员应在攻击者和受害者轨迹之间增加屏蔽。图5介绍了增加有效屏蔽的正确方法:通过中间层(金属N+1)将以金属N布线的模拟信号轨迹A和B与以金属N+2布线的噪声信号C屏蔽开来,完全覆盖重叠区域,并与干净的模拟接地电源连接。通过在临近信号增加金属层走线,可在同层的金属间(分别是金属N与N+2)实现进一步屏蔽隔离。

只有在必须的情况下才增加屏蔽,而且是不沿着所有路径,以避免不必要地增加信号寄生电容。




评论


相关推荐

技术专区

关闭