新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于TMS320F2812的数字频率计的设计

基于TMS320F2812的数字频率计的设计

作者:时间:2009-03-23来源:网络收藏

3 误差分析及测试结果
3.1 量化误差

设被测信号的频率为Fx,其真实值为Fxe,标准频率为Fs,在一次测量中,预置闸门时间为T′,Tpr为实际闸门时间,被测信号计数值为Nx,标准频率信号计数值为Ns。
Fx计数的起停时间是由该信号的上升沿触发的,在T′时间内对Fx的计数Nx无误差,对Fs的计数Ns假设相差N个脉冲,即|△et|≤n。
由于Fx/Nx=Fs/Ns,Fxe/Nx=Fs/(Ns+△et),根据相对误差公式有:


因此可以得到以下结论:
①相对测量误差与被测信号的频率无关。
②增大T′或者提高Fs,可以增大Ns,减少测量误差,提高测量精度。本设计方案中,预置闸门时间限定了最低的测量精度。
③误差分析中的n,主要由硬件切断T1PWM所需要的时间决定,为一个小整型常数。若预置闸门时间Tpr=O.012 8 s,则


即使n取不为l的小整型常数,仍可以使得精度维持在十万分之一以内,并且可以随着预置闸门时间的适当延长,得到进一步的提高。
3.2 测量的原理误差和标准频率误差
本测量原理类似多周期同步测量原理,主要的原理误差来自测量即将结束时,由D触发器产生低电平跳变来切断T1PWM,从而使其产生由CAPl和CAP3同时捕获上升沿的跳变。这段时间主要是由D触发器的反应时间决定。在测量过程中,针对这部分误差,可以通过适当增加预置闸门的时间来克服,同时考虑到DSP内部高速的时钟频率,这并不会明显地增加测量耗时,但却达到了弱化此误差的影响、增加测量精度的目的。
标准频率误差为△Fs/Fs。因为晶体的稳定度很高,标准频率误差可以进行校准,并且已将DSP内部的高速时钟频率进行了适当的分频,所以相对于量化误差,校准后的标准频率误差可以忽略不计。
3.3 测试结果
用函数信号发生器(型号为Tektronix AFG3010;精度为O.000 1%)产生方波信号,用设计的频率计测出频率,求出误差。本测频系统的测量精度可达到O.01%。根据误差分析可知,系统的最大误差发生在预置闸门时间正好填充了整数个被测信号时,即频率为78.125 Hz或者其整数倍时,所以选择这些点进行测试。实际的测试数据如表1所列。

4 结 论
本文着重分析了数字频率计的设计方案、硬件组成,以及采用Modbus协议实现上位机与下位机通信的软件设计。特点有:
①在频率测量原理方面,由于采用了多周期测量原理,消除了对被测信号计数时产生的±1个计数误差,其精度仅与闸门时间和标准频率有关,克服了传统的测频法或测周法的不足,实现了宽量程、高精度的频率测量。同时由于预置闸门时间的存在,保证了当被测频率在各频段之间来回切换时,系统反应灵敏,跟随性能好。
②在系统的总体设计方面,充分利用了 DSP的内部资源,即使用事件管理器中的定时器、捕获单元完成频率的测量;使用PWM的输出实现自检电路的设计;使用串口通信模块完成上位机和下位机的通信。在测量结果的显示方面利用RS232,通信协议采用Modbus协议,实现下位机和上位机的通信,将测量结果在上位机中显示出来。
本文只探讨了如何对单路信号进行频率测量,而对于多路信号,可先使其经过一个与门,通过软件判断哪一路信号,然后再运用本设计方法进行测量。针对这种情况所产生的误差问题还需作进一步的探讨,本文只给出初步的探索。


上一页 1 2 3 下一页

关键词: F2812 2812 320F TMS

评论


相关推荐

技术专区

关闭