新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 用于Sigma-Delta调制器的低电压跨导运算放大器

用于Sigma-Delta调制器的低电压跨导运算放大器

作者:时间:2010-08-03来源:网络收藏

1.2 电路结构考虑
跨导主要有两级运放、增益增强型、套筒式共源共栅和折叠式共源共栅等。其中,在两级放大结构中,次极点频率由负载电容决定,使其带宽较小,速度受到限制,且功耗较大,电源抑制比和共模抑制比较差。套筒式共源共栅结构具有频率特性好、功耗低等特点。然而,在低电源电压下,其输出摆幅和共模输入范围难以达到预期要求。增益增强型运放,虽然有着很高的直流增益但有着巨大的功率消耗,并不适用于该系统设计。综合考虑,采用速度较快,输出摆幅较大,共模输入范围广,性能折中的折叠式共源共栅结构。

本文引用地址:http://www.eepw.com.cn/article/187866.htm

2 电路分析与设计
2.1 折叠式共源共栅跨导
折叠式共源共栅跨导的输入管有两种选择,NMOS输入对管具有较高的跨导,能使运放达到较高的直流增益,但需要采用PMOS作为共源共栅管。在同样的偏置条件下,PMOS管的跨导为NMOS管的40%~50%,从而限制了运算放大器的次极点频率。如果采用PMOS作为输入级,运放则具有较低的噪声和较高的次极点频率,噪声较低,但直流增益较小。由于本设计对直流增益要求不高。故采用PMOS输入。跨导运算放大器结构如图2所示。

VM1和VM2是PMOS输入差分对管将输入差分电压转化成差分电流,经VM5和VM6后产生输出电压。VM11为长尾电流沉为输入差分对管提供静态工作电流,同时,提高输入共模抑制比(CMRR)。对电路进行小信号分析,可得到折叠共源共栅运放的直流增益

式中,r0为MOS管小信号输出电阻,与沟道长度成正比;gm是MOS管的跨导。
该运放的主极点为

在只考虑主要的电容即VM5的栅源电容时,次极点为


由式(5)可知,改变电路工作电流与负载电容同样可以改变SR。本设计中负载电容CL取5pF,考虑到运放工作的稳定性。必须保证运放的相位裕度PM大于60°。增大工作电流,将提高运放的直流增益与单位增益带宽GBW,同时提高SR,但会导致PM下降电路功耗增加。所以运放的工作电流应进行折中考虑。
2.2 共模反馈电路
全差分运放中运放反馈回路只提供差模电压而不提供共模电压,需要运用共模反馈电路(CMFB)来稳定差分输出信号的共模电压,此电路如图3所示。



评论


相关推荐

技术专区

关闭