新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 小模拟信号的高24位的精确度测量

小模拟信号的高24位的精确度测量

作者:时间:2011-12-17来源:网络收藏

Signal Amplitude : 信号幅度
Digital Filter Rsponse : 数字滤波器响应
power:功率
1.积分器将噪声强制推移到所关注的频带之外;
2.数字滤波器滤除高频噪声
frequency:频率
oversampling ratio:过采样率
  数字位流中总是会有一些输入信号带来的噪声。但是通过平均和滤波,增量累加ADC极大地缩小了噪声层。过采样率和内部增量累加调制器的“阶数”决定噪声高低。阶数这个术语指的是积分器的数量。例如,一个3阶调制器含有3积分器级。

  尽管增加积分器级数和增大过采样率可以进一步降低噪声,但是稳定性是3阶或更高阶增量累加转换器需要关注的大问题。一旦增量累加调制器出现不稳定,那么除非进行功率循环,否则它们常常不会再次变至稳定状态。凌力尔特公司的所有增量累加转换器都采用3阶调制器,而且每次转换都对调制器和滤波器复位。即使调制器进入不稳定状态(这很可能发生在基准电压很低、输入信号又很大的情况下),凌力尔特公司的增量累加ADC也可以无需周期性地开关电源而自己恢复到稳定状态,其它ADC产品也许做不到这一点。


  调制器环路稳定且噪声由积分器成形后,接下来要对所产生的数字信号进行滤波和抽取。抽取就是舍弃一些采样,主要是去掉由过采样带来的冗余信号信息。如果过采样率为256,那么ADC求取256个采样的平均值,而抽取器则每256个采样产生1个数字输出。滤波和抽取后产生的数字信号再从ADC输出,一采取串行格式。

  增量累加ADC的数字输出与基准源一样好。有噪声的基准是任何数据转换器的主要误差源。增量累加调制器的1位DAC由正基准电压和负基准电压偏置。正(或高)基准电压一般是输入范围的上限,而负(或低)基准电压一般是下限。有些增量累加ADC的正和负基准都连接到外部,另一些则将低的基准连接到共用电压上,如地电压。其它ADC可以选择使用内部带隙基准或外部基准。凌力尔特公司的增量累加转换器允许设计师改变基准和输入共模电压,变化范围从地一直到电源电压。

  在选择增量累加转换器时,转换时钟和数据延迟是两个需要考虑的重要因素。时钟控制数据处理的内部时序,并决定转换时间。转换时钟可以从内部提供,或者采用外部晶体或硅振荡器。不过,既然数字滤波器不抑制振荡器频率,那么采用内部振荡器是有优势的。

  由于数据延迟,当前输出结果落后于输入一个采样周期。凌力尔特公司所有无延迟增量累加(No Latency Delta SigmaTM)转换器都在一个周期内稳定,简化了多路复用应用。

  增量累加ADC虽然本质上很简单,但是配置这种ADC却常常是一个复杂的过程,如要写很多指令、平衡输入级的复杂性和选择外部振荡器。凌力尔特公司的增量累加转换器没有校准序列、配置寄存器、滤波器稳定时间和外部振荡器,降低了设计的复杂性。每个转换周期中都执行透明的偏移和满标度自动校准,以确保高准确度,而高准确度则保证能够分辨出1克或0.01度的差别。

接地电阻相关文章:接地电阻测试方法



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭