新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 多功能金属探测器的研究与设计

多功能金属探测器的研究与设计

作者:时间:2012-08-13来源:网络收藏

(2)基准频率电路

基准频率电路采用有源晶振进行分频得到,此处晶振选用频率为32.768KHz的5V供电的TTL电平,经过CD4060进行32分频后得到1.024KHz的基准信号。

(3)差频电路

感应信号与基准信号进行差频处理,得到差频信号,这个功能采用如下方法实现:两路信号作为异或门的两个输入端,异或门输出是包含着两种频率成分的信号,分别为感应信号与基准信号的和频分量与差频分量,通过对输出信号进行低通滤波,即得到所需要的差频分量。

当感应探头附近没有金属物体的时候,差频信号约为10Hz左右,为了提高信号的灵敏度,将差频率信号进行倍频处理。通过将差频信号经过PLL进行100倍频后,输出信号频率在1000Hz左右变化。

(4)频率测量电路

频率测量是本系统的核心部分之一,频率测量的方法有很多:测周期法主要针对低频的,脉冲计数法则主要针对高频的。因此,这两种方法在应用的过程中都有一定的局限性。本系统采用的是等精度测频:利用AVR单片机与CPLD相结合进行频率测量,具有测频精度高、范围宽的特点,并且测量的精度与待测信号无关,只与基准频率有关。

本系统中,AVR控制CPLD对待测信号与基准信号进行计数,并读取测量数据,对数据进行处理后,通过LCD进行显示。为了使用户操作本系统时更加的方便,编写了一个简单的菜单程序,通过3×5键盘对相应的菜单项进行操作,完成相应的功能。

频率测量一般都是由计数器和定时器完成,将两个定时/计数器一个设置为定时器,另一个设置为计数器,定时时间到后产生中断,在中断服务程序中处理结果,求出频率。这种方法虽然测量范围较宽,但由于存在软件延时,尽管在高频段能达到较高的精度,而低频段的测量精度较低。所以利用单片机测频时,如果选择不好的测量方法,可能会引起很大的误差。测量频率时,如果不是真正依靠硬件控制计数或定时,而是由软件查询或中断响应后再停止计数,虽然理论上能达到很高的精度,但实际测量中由于单片机响应有一定的时间延迟,难以做到精确测量。因此,本系统拟采用等精度测频发来实现频率测量。

等精度测频工作原理:

等精度频率测量用被测信号的多周期而不是单周期作门控信号;门控信号周期数可根据被测频率的大小自动调节,使计数值N保持不变,从而实现等精度测量。

预置门控信号是宽度为T的一个脉冲,Counterl和Counter2是两个可控计数器,标准频率信号从Counter1的时钟输入端CLK输入,其频率为Fs;经整形后的被测信号从Counter2的时钟输入端CLK输入,设其实际频率为Fxe,测量频率为Fx。

当预置门控信号为高电平时,经整形后的被测信号的上沿通过D触发器的Q端同时启动计数器Counter1和Counter2。Counter1、Counter2分别对被测信号(频率为Fx)和标准频率信号(频率为Fs)同时计数。当预置门信号为低电平时,随后而至的被测信号的上沿将使这两个计数器同时关闭,时序图如图3所示。设在一次预置门时间T中对被测信号计数值为Nx;对标准频率信号的计数值为Ns,则下式成立:

图3 等精度测频时序图

Fx/Nx=Fy/Ny Fx=(Fy/Ny)*Nx

本系统利用AVR单片机与CPLD相结合来实现等精度测频,具有测频精度高,范围宽的特点,并且测量的精度与待测信号无关,只与基准频率有关。



评论


相关推荐

技术专区

关闭