新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 2~4 GHz波段低噪声放大器的仿真设计

2~4 GHz波段低噪声放大器的仿真设计

作者:时间:2013-05-16来源:网络收藏

摘要:利用pHEMT工艺设计了一个2~4 宽带微波单片电路。本设计中采用了具有低噪声、较高关联增益、pHEMT技术设计的ATF-54143晶体管,电路采用二级级联放大的结构形式,利用微带电路实现输入输出和级间匹配,通过ADS软件提供的功能模块和优化环境对电路增益、噪声系数、驻波比、稳定系数等特性进行了研究设计,最终使得该LNA在2~4 内增益大于20 dB,噪声小于1.2 dB,输出电压驻波比小于2,达到了设计指标的要求。
关键词:;负反馈网络;pHEMT;ADS仿真

微波作为现代电子通信系统中重要组成器件,对整个通信接收系统的接收灵敏度和噪声性能起着决定性作用。随着半导体技术和宽带无线通信系统的发展,低噪声放大器向着更低噪声系数、更宽工作带宽和更高输出功率方向发展,并逐渐成为设计的热点。因此,研究设计出高性能的低噪声放大器具有十分重要的意义。由于高电子迁移率晶体管具有高频率、低噪声、大功率等一系列优点,所以用pHEMT制作的多级低噪声放大器已广泛应用于卫星接收系统、电子系统及雷达系统。

1 器件选择
本文选择标准元器件库中pHEMT晶体管、电阻、电容和微带线等无源元件作为设计的参数模型进行电路设计。由于电路增益要求大于20 dB,单级pHEMT功率增益在10 dB左右,考虑到工作频率很高,如匹配不当会造成级间损耗比较严重,所以采用二级放大。由于宽带设计,所以重点对这一频段的电路结构和参数进行设计和优化。
宽带放大器的实现方案有多种,如反馈式、分布式、有耗匹配式、平衡式以及近年来出现的级联分布式(CSSDA)宽带放大器等。各种方案有不同的优缺点及其应用场合,因为反触同时获得较宽工作带宽和较好的输入输出驻波比,所以馈式宽带放大器应用较多。但是对于低噪声放大器的设计而言,阻性反馈网络的引入会使噪声系数恶化。由于级联系统的噪声系数主要由第一级放大链路决定,后级的噪声系数对系统的噪声性能影响相对较小。考虑到低噪声的设计,设计的两级级联放大器中第一级按照最小噪声系数的原则进行设计,实现拓展低噪声放大器的工作频带;第二级中引入漏极到栅极的负反馈网络,从而使得在整个工作频段内增益较平坦。
a.JPG
式(2)是二端口放大器的噪声系数的表达式,其中Ys=Gs+jBs表示呈现在晶体管处的源导纳,Yopt表示得出最小噪声系数的最佳源导纳,NFmin表示当YS=Yopt时获得的晶体管的最小噪声系数,RN表示晶体管的等效噪声电阻,Gs表示源导纳的实部。由式(2)可知,若选择具有较小的RN值的晶体管,在Ys≠Yopt的条件下,电路整体能够获得相对较小的噪声系数。ATF-54143在VDS=3 V,IDS=40 mA的偏置状态下,其在2~4 的频率范围内,可获得较低的噪声系数和输入驻波比。
另外考虑到本设计放大器的增益指标要求达到20 dB,所以电路要采用两级放大器来实现。

2 直流偏置以及电路设计
放大器的直流偏置网络决定了晶体管的工作状态,而且对匹配电路的结构有很大影响,需要在电路设计之初就认真考虑。对pHEMT放大器,一种比较常见的偏置方法是:给pHEMT漏级加一个正电压,即采取单电源供电方式。本文采用的是图1所示自偏置结构,栅极通过微带线接地,源极接电阻R以获得高于栅极的电位。该结构的优点是采用单电源供电,使电路在使用中更为简便。电路要求电源电压为3.6 V,通过适当选择源极电阻R,令源极电位为0.6 V左右。

本文引用地址:http://www.eepw.com.cn/article/185442.htm

b.JPG


根据噪声理论,放大器的噪声系数主要由第一级放大器的噪声系数决定,设计第一级放大器的输入匹配网络通常采用最小噪声系数原则。在设计在级间匹配网络时,要使前级输入阻抗与后级输出阻抗匹配,同时后级晶体管获得较大的增益和较低的噪声系数。综合考虑为了获得较好匹配,通常采用多节微带线匹配。输出匹配电路设计主要考虑增益和驻波比,把微波管复数输出阻抗匹配到负载实数阻抗。优化设计根据此理论,可以实现很小的噪声系数同时兼顾增益。

pa相关文章:pa是什么


晶体管相关文章:晶体管工作原理


晶体管相关文章:晶体管原理

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭