新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 射频波束赋形技术改善 TD-LTE 蜂窝小区边缘性能

射频波束赋形技术改善 TD-LTE 蜂窝小区边缘性能

作者:时间:2013-10-29来源:电子产品世界收藏

  我们总结了一些重要的方面和术语,用于描述图 2 中的波束赋形发射:

本文引用地址:http://www.eepw.com.cn/article/184734.htm

  •主瓣:主要的最大发射功率瓣,通常指向目标设备或发射路径(该发射路径将通过在无线传播信道中进行反射到达目标设备)。

  •旁瓣:次要的功率发射瓣,有可能对服务小区或邻近小区中的其他用户设备产生多余的干扰。

  •功率零点:发射波束方向图中功率最小的位置,系统可以选择使用和控制该位置,以减少对服务小区或邻近小区中设备的干扰。

  •主波瓣宽度(Φ):主瓣发射选择性,在主瓣两个 3 dB 点上方位角宽度的测量结果。

  •主瓣至旁瓣的电平:预期主瓣发射功率相对于多余旁瓣发射功率的选择性功率差。

  在现代无线蜂窝通信系统中,一个最大的挑战是蜂窝小区边缘性能。这是波束赋形技术在提供 LTE 业务方面能够发挥关键作用的主要原因。图 3 显示了两个实际的情景示例,它们均利用了波束赋形的先进特性以改善现代蜂窝无线通信系统中的性能。

  图 3 (a) 为两个相邻的蜂窝小区,每个蜂窝小区都与位于两个蜂窝小区之间边界上的单独用户设备进行通信。此图显示,eNB1 正在与目标设备 UE1 通信,eNB1 发射使用波束赋形来最大限度提高 UE1 方位方向中的信号功率。同时,我们还可看到,eNB1 正尝试通过控制 UE2 方向中的功率零点位置,最大限度地减少对 UE2 的干扰。同样,eNB2 正使用波束赋形最大限度提高其在 UE2 方向上的发射接收率,同时减少对 UE1 的干扰。在此情景中,使用波束赋形显然能够为蜂窝小区边缘用户提供非常大的性能改善。必要时,可以使用波束赋形增益来提高蜂窝小区覆盖率。

  图3(b)描述了与两个空间分离的设备(UE3 和 UE4)同时进行的单小区(eNB3)通信。由于可以独立地对每个空间多路复用传输层应用不同的波束赋形加权值,所以可以结合使用空分多址(SDMA) 和 多用户MIMO(MU-MIMO)传输,提供经过改善的小区容量。

  图4显示了两种不同的波束赋形实施技术。图4(a) 中的实例是固定传统开关波束赋形器,其中包括一个 8 端口 Butler 矩阵波形赋形网络。这个网络实施由不同的可选择固定时间或相位时延路径矩阵使用 90° 混合耦合器和相移器组合实施而成。

  产生的固定发射波束数量等于用于构成 Butler 矩阵网络的 N 的数量。(示例使用了 8 个天线,产生了 8 条可选择的波束。)这有时也称为“波束网格”的波束赋形网络,支持选择任何单独的或组合的 N 个固定发射波束,以便最大限度提高设备接收机的 SINR。

  在无线网络中,最佳的 eNB 下行链路发射波束选择主要取决于对蜂窝小区中 UE 位置的了解。这种了解实际上可通过测量 eNB 接收天线阵列上的上行链路信号到达角(AoA)直接获得,也可从上行链路控制信道质量反馈信息间接推导得出。

  为了进行对比,图 4 (b) 显示了一个自适应波束赋形器实例。顾名思义,自适应波束赋形器能够不断地进行自适应和重新计算所应用的最佳发射波束赋形复数加权值,从而最好地匹配信道条件。

  因为自适应波束赋形器加权值不是固定的,所以它不仅能够优化目标 UE 上的接收 SINR,还能更好地使选择性和功率零点定位进行自适应,最大限度减少对其他用户的干扰。

  在无线网络中,eNB 通常会通过直接测量在 eNB 接收机阵列上观测到的已接收上行链路参考信号来估算最佳加权值,随后可根据这一信息计算上行链路到达角(AoA),并分解信道特征矩阵。

  如果是在频分双工(FDD)系统中,下行链路和上行链路使用不同的载波频率,那么所施加的波束赋形发射复数加权值将主要取决于测得或推导的目标 UE AoA 信息,以及蜂窝小区中任何其他 UE 的相关信息。上行链路上的 UE 所报告的信道反馈信息也可为加权值估算提供帮助。

  如果是在时分双工(TDD)系统中,由于下行链路和上行链路共享相同的载波频率,所以可以假定信道互易性。因此,TDD 系统中的波束赋形可能比 FDD 系统更出色。所选出的波束赋形发射复数加权值可以与从 eNB 接收信号推导出的结果一样,最好地匹配分解后的信道特征矩阵向量。这些匹配信道的波束赋形加权值可帮助优化目标 UE 接收机上观测到的 SINR。eNB 不依赖于上行链路上的用户设备所提供的信道反馈信息,尽管在实际上,eNB 波束赋形加权值估算过程中仍可能会使用这些信息。



评论


相关推荐

技术专区

关闭