新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 大功率试验变频电源研究与应用

大功率试验变频电源研究与应用

作者:时间:2009-12-17来源:网络收藏

随着电力事业的不断发展,变压器、发电机、断路器、GIS、110 k V及220 kV交联聚乙烯电缆等高压电力设备的越来越广泛。根据《电气装置安装工程电气设备交接标准》(GB50150-91)和《电力设备预防性规程》(DL/T096-1996)的要求,此类高压电力设备的安装验收和年度检修中,均需进行交流耐压项目,然而对这类电容性试品,采用常规工频耐压试验,所需试验设备和|稳压器容量都非常大,在现场进行试验难度也很大。对于同一试品而言,采用谐振试验方式,所需的容量和设备最小,重量也最轻。谐振试验系统在试品击穿时,谐振条件破坏,试品上电压和电流随之减小,这有助于保护谐振和试品的安全。因此谐振耐压试验更适合现场。图1为一般交流谐振耐压试验原理简图。
  1 变频试验电源基本原理

本文引用地址:http://www.eepw.com.cn/article/181145.htm


  变频电源做为交流谐振耐压试验系统的核心部分,要求调压、调频独立进行,输出电压0~400 V,频率30~300 Hz,且稳定度高,还要求在现场环境下有较强的抗干扰能力。 


  在调频调压控制技术发展的早期多采用PAM方式,因此,变频电源逆变器输出的交流电压波形只能是方波,改变方波有效值,只能通过改变方波的幅值,即中间直流电压幅值来完成。随着全控型快速开关器件GTR、IGBT、MOSFET等的出现,才逐渐发展为PWM方式。由于调节PWM波的占空比即可调节电压幅值,所以逆变环节可同时完成调压和调频任务,整流器无需控制,设备结构更简单,控制更方便。输出电压由方波改进为PWM波,降低了输出电压的低次谐波含量。


  SPWM是以正弦波作为基准波(调制波),用一列等幅的三角波(载波)与基准正弦波相比较产生PWM波的控制方式。如图2所示,当基准正弦波高于三角波时,使相应的开关器件导通;当基准正弦波低于三角波时,使相应的开关器件截止。由此,逆变器的输出电压波形为图2b所示的脉冲列,其特点是:半个周期中各脉冲等距等幅不等宽,总是中间宽,两边窄,各脉冲面积与该区间正弦波下的面积成比例。这种脉冲波经过低通滤波后可得到与调制波同频率的正弦波,正弦波幅值和频率由调制波的幅值和频率决定。这就是变频电源调频调压的原理。


  试验变频电源的主电路原理如图3所示。三相交流电压经过三相桥式不控整流电路整流成脉动直流电压,经过中间滤波电容的储能和滤波成为平滑直流电压。逆变环节由4块IGBT构成全桥逆变器,反并联二极管完成IGBT关断时的续流工作,R、C、D构成RCD阻止放电型吸收缓冲回路。逆变部分采用SPWM控制方式,将直流电压逆变为电压和频率可调的SPWM脉冲波。电感L和电容C3组成低通滤波器LC,滤出高频载波成分。为了限制电容器充电电流,在整流桥的输出端与储能电容之间串入一个限流电阻R1,只在接入电源的最初短时间内将限流电阻R1串入,当电容器两端电压升至一定值后,闭合接触器JC2将电阻R1切除。

  低通滤波器LC输出设计是否合适,直接影响变频电源输出电压波形的失真度,因此滤波器的设计原则是考虑最高输出频率,只要最高输出频率下正弦波的失真度得到满足,则低频输出时由于载波比增加,正弦波失真度可自然满足。


由于电源容量很大,IGBT关断和开通电流都很大,主电路引线电感Lp的存在,将在IGBT功率回路中引起浪涌电压,其能量与Vpeak/2 Lp I2成比例,较高的浪涌电压将增加功率器件的开关损耗,并危及器件的安全。因此在时必须采取措施减少主回路的配线电感,并用缓冲吸收电路来降低电压尖峰值。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭