新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 集成运放的非线性失真分析及电路应用

集成运放的非线性失真分析及电路应用

作者:时间:2010-05-26来源:网络收藏
在下面的设计中,AD8062采用单电源3.3 V供电方式,输入端使用的是I/Q两路正交信号,用于测试的输入信号是单频信号,输入信号功率范围为-28~-12 dBm,信道带宽5 MHz。运放的设计在ISM频段定位系统的接收射频前端,在AD8347对I/Q正交射频信号下变频后,对基带信号进行放大输出。AD8062差分放大采用的是双端输入单端输出的方式,I/Q两路双极性信号经运放合并后传输给A/D变换器进行采样。当接收信号为跳频信号时,AD8062电压的变化速率很快,能够即时跟随阶跃电压的变化。最初的设计采用图1(a)所示的电路连接方式,其中设计的MIMO系统接收射频前端曾有,在MIMO系统中采用的是单电源5 V供电方式,输入信号频率范围为0~5 MHz,功率为-12 dBm。上述条件下,放大器的功率增益为11 dB,信号输出的谐波小于-40 dBc,满足接收机灵敏度和后端A/D采样的要求。然而,AD8062的连接方式直接用于3.3 V单电源,当输入信号频率为1 MHz时,电路的输出特性如图2和图3所示。

本文引用地址:http://www.eepw.com.cn/article/180818.htm


AD8062的差分放大电路连接方式1,运放I/Q两路双极性输入的电压信号大小相等,符号相反,理论上经下变频器输出的双极性信号到AD8062的增益(dB)由下式计算得到:

在下变频器输出信号为-28 dBm的情况下,由图2可以看出AD8062的增益为11 dB左右,信噪比为20 dB左右,该增益基本满足理论计算值。但是,当下变频器输出信号为-12 dBm时,输入到AD8062信号的各次谐波功率均大于-50 dBc。由图3可发现,在AD8062的大信号输入时AD8062的特性使得输出信号严重,5 MHz信号带宽内二次谐波为-10 dBc,信号输出功率不能满足理论计算值。AD8062的严重带内谐波,使得后端无法检测到有用的信号,造成了这种电路无法正常使用。
2.3 AD8062的和电路优化
在集成运放的参数中,单频输入信号电压的变化速率很低,基本不用考虑AD8062的压摆率特性是造成谐波失真的原因。考虑到单电源集成运放在电源电压变小时,其最大共模输入电压范围也会变小,电路连接方式1产生的谐波失真与最大输入共模电压有很大的关系。A-D8062允许输入信号的最大共模电压范围为(-Vs―O.2 V)~(+Vs―1.8 V),电源电压越小,AD8062的最大共模输入电压范围越小,若超出这个最大范围,芯片就可能被烧毁。另外,关系到集成运放非线性参数的共模输入电压范围还要小于上述范围。在单电源5 V电压供电的电路中,允许输入信号的最大共模电压范围为-5.2~+3.2 V,然而在单电源3.3 V供电的电路中,该范围为-3.5~+1.5 V。电源电压的减少,使得AD8062的最大输入共模电压范围有所减少,这可能是造成集成运放非线性失真的原因。连接方式l的信号输入端没有隔直电容,必然造成集成运放对直流信号的放大,这就会出现输出信号的谐波失真。这是因为当直流电压超出最大输入共模电压范围时,集成运放的静态工作点发生了较大偏移,差分对管中的一管输出电流趋于饱和,另外一管的输出电流趋于截止,两管的输出电流之差不再跟随输入信号发生变化,而表现出集成运放的限幅电路特性,造成集成运放在大信号输入时输出信号的非线性失真。由此可以判断,在大信号输入的情况下,AD-8062的峰值超过了输入共模电压范围。为了解决共模电压过大的问题,对上述电路进行优化设计,即在连接方式2的集成运放的负项输入端加入隔直电容,其连接如图1(b)所示。

DIY机械键盘相关社区:机械键盘DIY


电流传感器相关文章:电流传感器原理
混频器相关文章:混频器原理


评论


相关推荐

技术专区

关闭